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Critical Casimir effect in classical binary liquid mixtures
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If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-
like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the
corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point
this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the
actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems.
We report on the direct measurement of critical Casimir forces by total internal reflection microscopy with
femtonewton resolution. The corresponding potentials are determined for individual colloidal particles floating
above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary
liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption
preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid
mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces
emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces
acting in film geometries within the Ising universality class and with equal or opposing boundary conditions,
we provide the corresponding theoretical predictions for the sphere—planar wall geometry of the experiment.
The experimental data for the effective potential can be interpreted consistently in terms of these predictions
and a remarkable quantitative agreement is observed.
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I. INTRODUCTION

A. Fluctuation-induced forces

At macroscopic scales thermal or quantum fluctuations of
a physical property of a system are typically negligible be-
cause fluctuations average out to zero upon increasing the
length and time scales at which the system is studied. At the
micrometer and nanometer scales instead, fluctuations be-
come generally relevant and, if externally controlled and spa-
tially confined, they give rise to novel phenomena. An ex-
ample thereof is provided by the Casimir force acting on
conducting bodies [1], which is due to the confinement of
quantum fluctuations of the electromagnetic field in vacuum
and which influences the behavior of micrometer-sized sys-
tems ranging from colloids to microelectromechanical sys-
tems (MEMS) and nanoelectromechanical systems (NEMS).

Thermal fluctuations in condensed matter typically occur
on a molecular scale. However, upon approaching the critical
point (CP) of a second-order phase transition the fluctuations
of the order parameter ¢ of the phase transition become rel-
evant and detectable at a much larger length scale £ and their
confinement results in a fluctuation-induced Casimir force f
acting on the confining surfaces [2]. This so-called critical
Casimir force f- has a range which is set by the correlation
length £ of the fluctuations of the order parameter. Since near
the critical point & can reach up to macroscopic values, the
range of f can be controlled and varied to a large extent by
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minute temperature changes close to the critical temperature
T,.. We shall show that this control of the thermodynamic
state of the system is a manageable task. This implies that the
critical Casimir force can be easily switched on and off,
which allows one to identify it relative to the omnipresent
background forces. In addition, by proper surface treatments
of the confining surfaces, the force can be relatively easily
turned from attractive to repulsive [3,4] in contrast to the
Casimir force stemming from electromagnetic fluctuations
for which such a change requires carefully chosen bulk ma-
terials providing the solid walls and the fluid in between [5].
Such a repulsive force might be exploited to prevent stiction
in MEMS and NEMS, which would open significant per-
spectives for applications. Finally, at T, the strength of the
critical Casimir force can easily compete with or even domi-
nate dispersion forces, with which it shows the same alge-
braic decay, however without suffering from the weakening
due to retardation effects. The universality of f- means that
the same force is generated near the critical point of liquid-
vapor coexistence of any fluid or near the consolute point of
phase segregation of any binary or multicomponent liquid
mixture. This allows one to pick and use those representa-
tives of the universality class which in addition optimize
desired performances of MEMS and NEMS. This provides a
highly welcome flexibility.

The fluctuation-induced forces generated by confining the
fluctuations of electromagnetic fields in the quantum vacuum
(Casimir effect) or of the order parameter in a critical me-
dium (critical Casimir effect) have a common description
within the field-theoretical approach. Accordingly, the con-
nection between these two effects goes well beyond the mere
analogy and it indeed becomes an exact mapping in some
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specific cases of spatial dimension d, geometries, and bound-
ary conditions. This deep connection actually justifies the use
of the term “critical Casimir force” when referring to the
effective force due to the confinement of critical fluctuations.
On the other hand, from a theoretical point of view the quan-
tum and the critical Casimir effects are also distinct in that
the quantum one in vacuum corresponds to a free field theory
whereas the critical one is described by a more challenging
non-Gaussian field theory.

B. Finite-size scaling

The theory of finite-size scaling (see, e.g., Refs. [3,4])
predicts that in the vicinity of T, the critical Casimir force fc
and its dependence on temperature are described by a uni-
versal scaling function which depends only on the gross fea-
tures of the system and of the confining surfaces, i.e., on the
so-called universality class of the phase transition occurring
in the bulk and on the geometry and surface universality
classes of the confining surfaces [6—8]. The latter character-
ize the boundary conditions (BCs) [3,6—8] the surfaces im-
pose on the fluctuations of the order parameter of the under-
lying second-order phase transition. The actual physical
nature of the order parameter ¢ depends on which kind of
continuous phase transition is approached: in the case we
shall be mainly concerned with in the following, i.e., the
consolute point of phase segregation in binary liquid mix-
tures, ¢ is given by the difference between the local and the
mean concentration of one of the two components of the
mixture (see, cf. Sec. Il B for further details). For binary
liquid mixtures the confining surfaces generically exhibit
preferential adsorption of one of the two components of the
mixture, resulting in an enhancement of the order parameter
¢ close to the surface. (This amounts to the presence of
symmetry-breaking surface fields, see, e.g., Refs. [6-8].)
One usually refers to the corresponding boundary conditions
as (+) or (—) depending on whether the surface favors
¢$>0 or ¢<<0, respectively. Due to its universal nature, the
critical Casimir force can be studied via representative mod-
els which are amenable to theoretical investigations. Since
due to universality microscopic details can only in a rather
limited way be blamed for potential discrepancies, the result-
ing predictions face very stringent experimental tests.

Most of the available theoretical and experimental studies
focus on the film geometry in which the system undergoing
the second-order phase transition is confined between two
parallel surfaces of large transverse area S at a distance L.
For this geometry and assuming that the only relevant ther-
modynamic variable is the temperature T (possible additional
variables such as the concentration are set to their critical
values), renormalization-group theory shows [9,10] that the
critical Casimir force f scales as

fo(T,L) S ~
CkT = O (LIE)'™) (1)

in three spatial dimensions (d=3), where J(x) is a universal
scaling function, and 7 is the reduced deviation from the
critical temperature 7, such that 7>0 corresponds to the
disordered (homogeneous) phase. If, as it is usually the case,
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the homogeneous phase is located at high temperatures in the
phase diagram of the system, one defines 7=(7-T,)/T..
However, there are also cases—such as the one we shall be
interested in (see, cf. Fig. 8)—in which this phase is located
at low temperatures so that there one defines 7=—(T-T.)/
T.. The system-specific (i.e., nonuniversal) amplitudes & in
Eq. (1) enter into the algebraic behavior of the bulk correla-
tion length & of the order parameter ¢ upon approaching the
critical point,

Er—0%) =&l 2)

In what follows we shall mainly consider &=¢;, which
forms with & a universal amplitude ratio Uy =&5/&
=1.9 [11,12] in those cases in which §(T<Of "is finite.
[Renormalization-group theory tells that in the bulk there are
only two independent nonuniversal amplitudes, say, &) and
Cd,:(gb)/(—r)ﬁ of the order parameter below T.; all other
nonuniversal amplitudes can be expressed in terms of them
and universal amplitude ratios [12]. Here B is the critical
exponent which characterizes the singular behavior (¢)
~ (—=7)P of the average order parameter {¢) for 7— 0~ with
B=0.3265(3) for the three-dimensional Ising universality
class [11].] The bulk correlation length &€ can be inferred
from, e.g., the exponential decay of the two-point correlation
function of the order parameter. The algebraic increase in &
[Eq. (2)] is characterized by the universal exponent ¥ which
equals 0.6301(4) for the three-dimensional Ising universality
class [11], which captures, among others, the critical behav-
ior of binary liquid mixtures close to the demixing point as
studied experimentally here.

C. Theoretical predictions and previous experiments

For the Ising universality class with symmetry-breaking
boundary conditions theoretical predictions for the universal
scaling function ¢ are available from field-theoretical
[13,14] and Monte Carlo studies [13,15,16]. The critical Ca-
simir force turns out to be attractive for equal BCs on the
two surfaces, i.e., (+,+) or (—,—), whereas it is repulsive
and generically stronger for opposing boundary conditions,
i.e., (+,—) or (—,+). In the presence of such boundary con-
ditions, for topographically [17] or chemically [18] patterned
confining surfaces or for curved surfaces [19,20] theoretical
results are available primarily within mean-field theory.

Following theoretical predictions and suggestions [21],
previous indirect evidences for both attractive and repulsive
critical Casimir forces were based on studying fluids close to
critical endpoints (see Ref. [22] for a more detailed sum-
mary). Under such circumstances, the film geometry with
parallel planar walls can be indeed experimentally realized
by forming complete wetting fluid films [23] in which a lig-
uid phase is confined between a solid substrate (or another
spectator phase) and the interface with the vapor phase and
its thickness L can be tuned by undersaturation, in particular,
off criticality. Upon changing pressure and temperature one
can drive the liquid film toward a second-order phase transi-
tion which nonetheless keeps the confining liquid-vapor in-
terface sharp. The fluctuations of the associated order param-
eter, confined within the film of thickness L, give rise to a
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critical Casimir pressure (related to 9 [21]) which acts on the
liquid-vapor interface, displacing it from the equilibrium po-
sition it would have under the effect of dispersion forces
alone, i.e., in the absence of critical fluctuations. This results
in a temperature-dependent change of L. Based on the
knowledge of the relationship between L and pressure, by
monitoring this variation it is possible to infer indirectly the
magnitude of the Casimir force which drives this change of
thickness. This approach has been used for the study of wet-
ting films of *He at the normal-superfluid transition [24] for
He-*He mixtures close to the tricritical point [25] and for
classical binary liquid mixtures close to demixing transitions
[26,27]. The film thickness L has been determined by using
capacitance [24,25] or x-ray reflectivity measurements [26],
or ellipsometry [27]. For the results of Refs. [24], [25], and
[26] the quantitative agreement with the theoretical predic-
tions for the corresponding bulk and surface universality
classes (see Refs. [9,10,15,16,21,28-33], [32,34], and
[14-16,32], respectively) are excellent [24] or remarkably
good [25,26]. For *“He [24] one has Dirichlet-Dirichlet
boundary conditions, for *He-*He mixtures [25] Dirichlet-
(+) boundary conditions, and in Ref. [26] (+,—) boundary
conditions hold.

D. Direct determination of critical Casimir forces

The aim of the experimental investigation discussed here
is to provide a direct determination of the Casimir force by
measuring the associated potential ®,. On dimensional
grounds and on the basis of Eq. (1), the scale of this potential
is set by kT, and therefore, as realized in Ref. [26], in order
to enhance the strength of the critical Casimir force it is
desirable to engage critical points with higher 7. compared
to those of the \ transition investigated in Refs. [24,25]. This
consideration suggests classical fluids as natural candidates
for the critical medium. The experimentally driven prefer-
ence for having 7, and the critical pressure to be close to
ambient conditions can be satisfied by numerous binary lig-
uid mixtures which exhibit consolute points for phase segre-
gation. From Eq. (1) one can infer a rough estimate of the
critical Casimir force f. For an object which exposes an
effective area S=1 ,um2 to a wall at a distance L=100 nm,
and for 7.=300 K one finds f-=4 pN. Since the scaling
function ¥(x) vanishes upon moving away from criticality,
i.e., (x| —>%)—0, and because one is interested in also
probing larger distances L, one needs force measurements
with a force resolution which is significantly better than pN.
Atomic force microscopy at room temperature cannot deliver
fN accuracy. This required sensitivity can, however, be
achieved by using total internal reflection microscopy
(TIRM), which enables one to determine the potential of the
effective forces acting on a colloidal particle near a wall, by
monitoring its Brownian motion in a solvent. Choosing as
the solvent a suitable binary liquid mixture allows one to
investigate the critical Casimir force on the particle which
arises upon approaching the demixing transition of the mix-
ture. Such a second-order phase transition falls into the bulk
universality class of the Ising model. In this geometrical set-
ting the fluctuation spectrum of the critical medium (i.e., the
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binary liquid mixture) is perturbed by the confinement due to
a flat wall and by the presence of the spherical cavity. The
curvature of one of the two confining surfaces introduces an
additional length scale and thus leads to an extension of the
scaling form in Eq. (1) such that the scaling function ¥ ad-
ditionally depends on the ratio between the radius R of the
colloid and the minimal distance z between the surface of the
colloid and the flat surface of the substrate [cf. Sec. I A, here
z plays the role of L in Eq. (1)]. At present, for arbitrary
values of z and radii of curvature, theoretical predictions for
the critical Casimir force in a geometrical setting involving
one nonplanar surface are available only within mean-field
theory, both for spherical [19,20] and ellipsoidal [35] par-
ticles, which demonstrate that the results of the so-called
Derjaguin approximation are valid for z/R<<1 [19,20] (see,
cf. Sec. II). Beyond mean-field theory and for various uni-
versality classes, theoretical results have been obtained in the
so-called protein limit corresponding to z/R, &/z>1 [9,36],
where R indicates the typical size of the, in general non-
spherical, particle. However, at present this protein limit is
not accessible by TIRM because for small particles far away
from the substrate (through which the evanescent optical
field enters into the sample) the signal of the scattered light
from the particle is too weak. The experimentally relevant
case is the opposite one of a large colloidal particle close to
the wall. Although in d=3 theoretical results for the full scal-
ing function of the sphere-plate geometry are not available,
in this latter case one can take advantage of the Derjaguin
approximation in order to express the critical Casimir force
F¢ acting on the colloid in terms of the force acting within a
film geometry, which was investigated successfully via
Monte Carlo simulations in Refs. [15,16]. This is explained
in detail in Sec. IT A, in which we present the theoretical
predictions for the scaling function of the critical Casimir
force (and of the associated potential) for the case of a sphere
near a wall immersed into a binary liquid mixture at its criti-
cal composition. On the other hand, in Sec. II B we discuss
the expected behavior of the effective potential of the colloid
if the binary liquid mixture is not at its critical concentration
so that, upon changing the temperature, it undergoes a first-
order phase transition. The discussions in Sec. II form the
basis for the interpretation of the experimental results. The
experimental setting is described in Sec. III. In Sec. Il A we
recall the principles of TIRM and of the data analysis,
whereas in Sec. III B we discuss the specific choice of the
binary mixture used here and how one can experimentally
realize the various boundary conditions. In Sec. IV we
present in detail the experimental results, comparing them
with the theoretical predictions, for mixtures both at critical
and non-critical compositions. A summary and a discussion
of perspectives and of possible applications of our findings
are provided in Sec. V. Part of the analysis presented here
has been reported briefly in Ref. [37]. (For a pedagogical
introduction to the subject see Ref. [38].)

II. THEORETICAL PREDICTIONS
A. Critical composition

1. General properties

The critical Casimir force F acting on a spherical par-
ticle of radius R, at a distance z of closest approach from the
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flat surface of a substrate and immersed in a near-critical
medium at temperature 7=T, takes, for strong preferential
adsorption, the universal scaling form [19,20,39]

< 4
i) ©

The scaling function K(is’p)(x,A) depends, in addition, on the
combination of (sphere, plate) [(s,p)] boundary conditions
imposed by the surfaces of the sphere and of the plate and on
the phase from which the critical point is approached (i.e., on
the sign of 7, with K& corresponding to 7=0). [In line with
Eq. (2) and with the standard notation in the literature, the
one-phase region is denoted by + and the two-phase region
by —. These signs should not be confused with the signs (+,
+), etc., indicating, also in line with the literature, the char-
acter of the boundary conditions of the two confining sur-
faces (s,p). In order to avoid a clumsy notation we suppress
or use these two notations in a self-evident way.] The scaling
form of the associated potential ®(z)= [~ ds Fc(s) follows
by integration of Eq. (3). In the two limiting cases A>1 and
A <1 it is possible to calculate K(x,A) on the basis of the
so-called small-sphere expansion and Derjaguin approxima-
tion, respectively [19,20,39]. In the former case one finds in
three space dimensions for 7>0 and symmetry-breaking
boundary conditions (s,p)=(= ,+) [see Eq. (7) in Ref. [19],
which also includes higher-order terms],

A

kgT
ﬂﬂhfﬁ@w@z

a xﬁ/v+1

+.4) _ -
K (d =)= F g

P_;_()C)A_(ﬁ/w-l) + O(A—ZB/V—I) ,

(4)

where B/v=0.518. In this limit, the force acting on the
“small” particle is determined, to leading order, by the inter-
action between the particle and the average order parameter
profile (¢(z))..;, induced by the planar wall in the absence of
the particle, i.e., in a semi-infinite system (c0/2). This profile
is characterized for 7> 0 by the universal scaling function P,
entering Eq. (4): <¢(Z)>w/2=<¢>x,—r<0P+(Z/g)a where
<¢>m,_7.<0=c¢7"8 is the value of the order parameter in the
bulk () corresponding to the reduced temperature —7— 0.
The universal constant ¢, in Eq. (4) characterizes the crltlcal
adsorption profile P, (x—0)— c,x#", whereas a=A? o/ By is
the universal ratio [39] between the nonunlversal amphtudes
Ay and B, of the critical order parameter profile in the semi-
infinite system (¢(2)).;2 —o=A4(22) " and of the two-point
correlation function in the bulk (¢(r)$(0)).. —o=B4r2*",
respectively. In turn, A, (and therefore B ;) can be expressed
in terms of the two independent nonuniversal amplitudes &;
and C, via A¢—C+C¢/(2§ )=P'»_(For a detailed discussion of
the values of these universal amplitude ratios we refer the
reader to Refs. [19,20,39].)

2. Derjaguin approximation

Equation (4) is useful to discuss the behavior of colloids
which are small compared to their distance from the plate.
However, in the experiment discussed in Sec. III, the dis-
tance z is typically much smaller than the radius R of the
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FIG. 1.
plate-sphere geometry and (b) cross section through the center of
the sphere and normal to the plate. In (a), the base of a cap of the
sphere with radius 7(6) is shown as a thin line. The inner circle of
the grey ring dS(6) is this thin line shifted by R sin 646 toward the
center of the sphere. In (b), 5=r(6+d6)—r(6) is the cross section of
the gray ring dS(6) shown in (a).

(a) Geometry of the Derjaguin approximation for the

particle. This case can be conveniently discussed within the
Derjaguin approximation, which yields in three dimensions

[19],

K(x,A — 0) = A2H(x), (5)
where the expression for ﬁ(x) is determined further below in
terms of the scaling function ¥ of the critical Casimir force
fc acting within a film [see Eq. (1)].

The scaling functions ¥ _)(x) and O ,)(x) for the
boundary conditions (+,—) and (+,+) relevant to the study
of the critical properties of binary liquid mixtures at their
critical compositions have been determined by Monte Carlo
simulations [15,16]. Within the Derjaguin approximation,
valid for A<1, i.e., if the radius R of the colloid is much
larger than the minimal separation z between the surface of
the colloid and the flat substrate, the curved surface of the
colloid is considered to be made up of successive circular
rings of infinitesimal area dS(6) and radius r(6) which are
parallel to the substrate and are at a normal distance L(6)
=z+R(1—cos 6) from an opposing identical circular ring on
the surface of the substrate (see Fig. 1). Assuming additivity,
the contribution dF of each single pair of rings to the total
Casimir force F is given by

dFc _ds(9)

= g LD, ©)

where U is the scaling function of the critical Casimir
force acting within the film geometry [see Eq. (1)]. Here
it is convenient to express ¢ not as a function of u
= 7'(L/§ ) as in Eq. (1) but as a function of x=L/¢& where
x=u" for u>0 and x=U; (-u)” for u<0 with U, =1.9
[11] for the three- dimensional Ising universality class we
are interested in. The radius r(6#) of the ring is given by
r(#)=R sin A and therefore its area is dS(6)=mr(60+d6)]*
—a{r(6)*=2mR? sin fcos Adh. The total force F. is ob-
tained by summing all the contributions dF(6) of the circu-
lar rings up to the maximal angle 6y,
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E_FM ds()
ksT ) oo L3(6)

Here, 6y;=7/2 is a natural choice, neglecting any influences
from the back side of the sphere. However, we shall see
below that its specific value does not affect the result in the
limit R> z. For R> 7 the integral (due to the denominator) is
dominated by the contributions it picks up at small angle 4 so
that one can approximate L(6)/z=1+(R/z)(6*/2) and there-

fore
0 R
—31‘}([1 + —02/2}/5).
} z

Fo(z) 2@R? [
kT e a0 R
Z 0
? l1 + =62

Z

H(L(0)/§). (7

(8)

[For 6y;— o this is identical with Eq. (4) in Ref. [19].] In-
troducing the variable /=1+(R/z)(6*/2), one can write the
previous expression as

Fo(z) 2mR f oo

—— = dl=9(1z/§), 9
wr -2 ), e (1/§) )

where Iy = 1+(R/z)(6%,/2). In the limit R/z— %, ly;— = in-

dependently of 6y so that the integral can be extended up to

% and

N9, (10)

where
[e2]

dx) =27 f

1 dll%ﬁ(lx). (11)

The potential ®(z) associated with the Casimir force is
given by

) 27R ([~ *
ﬁ — Lf dyf dly"zl_gﬁ(lyz/f)
kgT z Ji 1

L f dv(iz - %)mvz/g) ~Rowe,
1 v v b4

z
(12)

where we have changed the variable /v =1y, exchanged
the order of the remaining integrals [{dy[ dv=[Tdv[idy
and introduced the scaling function )

®(x)5277f dv(%—%)ﬁ(vx). (13)
| v: v

According to Egs. (10) and (12), for separations z much
smaller than the radius of the colloid, the Casimir force and
the Casimir potential increase linearly upon increasing the
radius R of the colloid. At the bulk critical point, 3(0)
=@(0)=79(0) and 9'(0)=2m9 (0), whereas @'(0)=. If
in the film geometry the force is attractive (repulsive) at all

temperatures, within the Derjaguin approximation the same
sign holds also in the sphere-plate geometry. Within the Der-
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jaguin approximation the Casimir force acting on a (+) col-
loid in front of a (—) substrate is the same as the one acting
on a (—) colloid in front of a (+) substrate. Beyond this
approximation, this is true only at the critical concentration.
Although the Derjaguin approximation is expected to be
valid only for R> z, the comparison between the results of
the mean-field calculation [19,20] for the actual sphere-plate
geometry and the ones of the corresponding Derjaguin ap-
proximation based on the mean-field theory for the film ge-
ometry show good agreement even for z/R up to 0.4-0.5.

In passing we mention that, within the Derjaguin approxi-
mation, the potential of the critical Casimir force acting on a
colloid of radius R at a surface-to-surface distance z from a
second colloid of radius R is half of the potential the first
colloid would experience at a closest distance z from a plane
imposing the same boundary conditions as the second colloid
would do. This can be inferred from the analysis reported
above by taking into account that in the former case L(6)
=z+2R(1—cos 6). Accordingly, the predictions for the scal-
ing functions reported in the following section can be con-
veniently used in the case of two colloids immersed in a
near-critical binary mixture.

3. Theoretical predictions for scaling functions

For the universality class of the three-dimensional Ising
model, the scaling functions 9 for the Casimir force in the
film geometry—which enter into Eq. (13)—have been deter-
mined in Refs. [15,16] for (+,+) and (+,—) BCs [or,
equivalently, (—,—) and (—,+) BCs] by Monte Carlo simu-
lations. Due to the presence of strong corrections to scaling,
the amplitudes of the corresponding numerical estimates for
O.(x) and ¥, _(x) are affected by a systematic uncer-
tainty of about 20% [15,16]. The numerical data presented in
Refs. [15,16] are very well fitted by certain analytic ansitze
(at least in the range of scaling variable which has been
investigated numerically) which, in turn, can be used in order
to calculate the corresponding scaling functions ©, ) and
0, - for the potential [Fig. 2, see also Fig. 2(d) in Ref. [37]]

as well as {9( ++) and 19( +-) for the force (Fig. 3). The simu-
lation data for the film scaling functions ¥, ,)(x) and
¥, (x) can actually be fitted even by functions of various
shapes (the asymptotic behavior of which for large |x| is,
however, fixed, see further below). This leads to different
estimates of the scaling functions outside the range of the
scaling variable for which the Monte Carlo data are currently
available. This results also in different estimates of O, ,),

O ), 19( +.+)» and 19( +—) obtained from ¥, ,)(x) and ¥, _)(x)
via Egs. (13) and (11). However, the uncertainty of the esti-
mates for the shapes is negligible compared to the inherent
systematic uncertainty associated with the amplitudes of
¥, +)(x) and 9, _)(x). For a detailed discussion of these is-
sues we refer to Ref. [16].

The critical Casimir force fo(T,L) between two planar
walls [see Eq. (1)] with symmetry-breaking boundary condi-
tions is expected to vary as exp(—L/§) as a function of L
> & for 7>0 (see, e.g., Ref. [40] and, in particular, the foot-
note 3 therein). Accordingly, ¥ +)(x>1)=A.x’¢™ and
from Egs. (11) and (13) one finds
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FIG. 2. Scaling functions ®, ,) and O, ) of the Casimir po-
tential @ [see Eq. (12)] for (+,+) and (+,—) BCs, respectively,
within the Derjaguin approximation and for the three-dimensional
Ising universality class, as functions of u=(z/&)"" with »
=0.630. The thick solid and dashed lines have been obtained via
Eq. (13) on the basis of the Monte Carlo estimates for ¥, ;) +-)
presented in Refs. [15,16], indicated by (i) and (ii), respectively, in
Figs. 9 and 10 of Ref. [16]. [The thick solid lines agree with the
estimates reported in Fig. 2(d) of Ref. [37].] O, ,) attains its mini-
mum value ©{') ~-3.6 (solid line) and ~2.8 (dashed line) both for
Upmin=0.54, whereas O, _, attains (smoothly) its maximum value
O™ =19 (solid line) and 14 (dashed line) both for iy, =-0.03.
The first derivatives of @, _) and O, 4 diverge logarithmically for
u— 0. The thin lines for u>1 indicate the asymptotic behaviors of
®(u>1) given in Eq. (14) with the numerical values of the coeffi-
cients A+ indicated from top to bottom for the corresponding
curves. For (+,+) boundary conditions the asymptotic expressions
are indistinguishable from O, ,(u) for u=1.

19(+,i)(x >1)=2mA. x’e*,
and
O+ (x>1)=27A xe™, (14)

for the critical Casimir force and potential, respectively, in
the sphere-plate geometry. The analysis of the Monte Carlo
data presented in Figs. 9 and 10 of Ref. [16] yields Af)
=-1.51(2) and A”=1.82(2), respectively, for the data sets
therein indicated as (i) whereas it yields Afi)=—1.16(2) and
A"=138(2) for the corresponding data set (if). [We recall
here that the data sets (i) and (i) turn out to be proportional
to each other, see Refs. [15,16] for details.]

Figure 3 shows that the critical Casimir force for the
sphere-plate geometry exhibits the same qualitative features
as in the film geometry: for (4,4) [(+,—)] BCs the force is
attractive (repulsive) and attains its maximum strength for
7>0 (7<0), corresponding to the one-phase (two-phase) re-
gion. For fixed values of the scaling variable, the strength of
the repulsive force for (4+,—) BC is larger than the one of the
attractive force in the case of (+,+) BC. The inset of Fig. 3

compares the estimate for the scaling function 1?}(+’+)(x

=L/&—up to its normalization 19(+’+)(0)—based on the
Monte Carlo data of Refs. [15,16] (solid line) with the early
estimate of Ref. [19], which is based on the pointwise and
linear interpolation between the exactly known film scaling
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FIG. 3. Scaling functions 19(+,+) and 5(+,—) of the Casimir force
F¢ [see Eq. (10)] for (+,+) and (+,—) BCs, respectively, within
the Derjaguin approximation and for the three-dimensional Ising
universality class, as functions of u=7(z/ fg)” Y with v=0.630. The
thick solid and dashed lines have been obtained via Eq. (11) on the
basis of the Monte Carlo estimates for 9, . . -) presented in Refs.
[15,16], indicated by (i) and (ii), respectively, in Figs. 9 and 10 of
Ref. [16]. ’§(+,+) attains its minimum value 3ETT; =-4.9 (solid line)
and —3.8 (dashed line) both for u,,;,=2.6, whereas 5(+’_) attains its
maximum value §§$i§>:21 (solid line) and 16 (dashed line) both
for uy,;,=-1.5. The second derivatives of 5(+’+)(u) and 1§(+,_)(u)
diverge logarithmically for u— 0. The thin lines for #>1 indicate
the asymptotic behaviors 9(u>1) given in Eq. (14) with the nu-
merical values of the coefficients A+ indicated from top to bottom
for the corresponding curves. For (+,+) boundary conditions the
asymptotic expressions are indistinguishable from 1.?}(+,+)(u) for u
=5. In the inset we compare the estimate for 3(+,+)(X)/ 1?}(+,+)(0) as
a function of x=z/ & based on the Monte Carlo data of Refs. [15,16]
(solid line, MC) with the one presented in Ref. [19] and obtained by
interpolating linearly and pointwise the exactly known film scaling
functions in d=2 and d=4 in order to obtain an estimate for d=3
(dotted line, interpol.). The Monte Carlo estimate for this ratio is the
same for both data sets (i) and (ii) in Ref. [16].

functions in d=2 and d=4, such as to obtain an estimate of

1?7(+!+)(x=L/ £) for d=3 (dashed line). Although this latter es-
timate captures correctly some qualitative features of the uni-

versal scaling function 19(+‘+)(x=L/ &), it fails to be quantita-
tively accurate, as the comparison with the Monte Carlo
estimate reveals. The same consideration applies to the cor-
responding estimates for @, ,).

Equations (12) and (13), together with Fig. 2, form the
theoretical basis for the interpretation of the experimental
results for the effective interaction potential between a
spherical colloidal particle and a planar wall, immersed into
a binary liquid mixture at its critical composition and near its
consolute point.

4. Deviations from strong adsorption

The theoretical analyses presented above and in Refs.
[15,16,37] assume that the confining surfaces are character-
ized by a sufficiently strong preferential adsorption for one
of the two components of the mixture, corresponding to (+)
or (—) fixed-point boundary conditions in the sense of
renormalization-group theory [6,7]. Within the coarse-
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grained field-theoretical description of the binary mixture
close to a boundary B in terms of the order parameter ¢
[6,7], the preferential adsorption is accounted for by a sur-
face contribution —h,[zdS$(x € B) to the effective free en-
ergy of the system, where the “surface field” A, summarily
quantifies the strength of the preferential adsorption. Indeed,
hy>0 [h;<0] favors ¢>0 [¢<0] at the boundary B so
that, for |i,| large enough, |¢(z)|*z#"” at normal distances
z—0 (but still large on molecular scales) from B [8]. The
(+) and (—) boundary conditions correspond to the limits
h,— +cc and —oo, respectively, of strong preferential adsorp-
tion. Within this coarse-grained description the gross features
of the relation between /, and the material properties of the
wall and the mixture can be inferred from the behavior of
experimentally accessible quantities such as critical adsorp-
tion profiles or excess adsorption (see, e.g., Refs. [41,42]).
For a weak adsorption preference, the corresponding #h;
might be so small that upon approaching the critical point
one effectively observes a crossover in the kind of boundary
condition imposed on the order parameter. The critical Ca-
simir force reflects such [43] or related [44] crossover behav-
iors; in the film geometry, depending on the film thickness,
the force can even change sign [43,44]. On the basis of scal-
ing arguments one expects that for moderate adsorption pref-
erences the scaling function in Eq. (1) additionally depends
on the dimensionless scaling variables ys,,-Ea,-hSV,-LAl/ Vo
=1,2, where h; and hg, are the effective surface fields at
the two confining surfaces, ;>0 are corresponding nonuni-
versal constants, and A; =0.46 is the so-called surface cross-
over exponent at the so-called ordinary surface transition
[7,45]. One can associate a length scale €;= (a|h, )"
with each surface field, such that the theoretical predictions
discussed before are valid for L> €, i.e., y,;,— * o, whereas
corrections depending on €;/ L are expected to be relevant for
L={¢;. For £;> L, instead, the preferential adsorption of the
wall i is so weak that a crossover occurs toward boundary
conditions which preserve the ¢+—>—¢ symmetry and there
appears to be no effective enhancement of the order param-
eter upon approaching the wall. Heuristically, the length
scales €; can be interpreted as extrapolation lengths z., ;% €;
in the sense that for small enough ¢;# 0 the order parameter
profile behaves as |¢(z— 0)|~ (z+2¢,) " [6,46,47] upon
approaching the wall i. Within the concept of an extrapola-
tion length the effects of a physical wall with a moderate
preferential adsorption (which implies €;# 0) on the order
parameter are equivalent to those of a fictitious wall with
strong preferential adsorption (which means ¢;=0) displaced
by a distance —z.,,; from the physical wall. Although this
picture is consistent only within mean-field theory [6,46] it
turns out to be useful for the interpretation of experimental
results [41] and simulation data [47] as an effective means to
take into account corrections to the leading critical behavior.
Assuming that this carries over to the critical Casimir forces,
a film of thickness L and moderate adsorption at the confin-
ing surfaces is expected to be equivalent to a film with strong
adsorption and thickness z. +L+2z,,>L. On the same
footing, a sphere of radius R and a plate at a surface-to-
surface distance z, both with moderate preferential adsorp-
tion, should behave as a sphere of smaller radius R—zqy on
and a plate at a distance zey p)+2+Zex,sph > 2> both with strong
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preferential adsorption. We anticipate here that the interpre-
tation of the experimental data presented in Sec. IV B does
not require to account for the effect described above, even
though we cannot exclude the possibility that such correc-
tions might become detectable upon comparison with theo-
retical data with a smaller systematic uncertainty than the
ones considered here.

B. Noncritical composition
1. General properties

In this section we consider thermodynamic paths ap-
proaching the critical point from the one-phase region by
varying the temperature at fixed off-critical compositions,
e.g., ¢4 # ¢y, where ¢, is the concentration of the A compo-
nent of a binary A-B mixture. For systems with a lower
consolute point these paths lie below the upward bent phase
boundary of first-order phase transitions in the temperature-
composition (7,c,) parameter space [see, cf. the vertical
paths in Fig. 8(b)]. Performing experiments along such paths
is another useful and interesting probe of the critical Casimir
force, because the corresponding Casimir scaling function
acquires an additional scaling variable % =sgn(h)L/[,, where
Li=lo|(ca—c5) /7P and [ is a nonuniversal amplitude. The
bulk field % is proportional to the difference (us—ug)—(teq
—ug). of the chemical potentials of the two components of
the binary liquid mixture. If this difference is nonzero one
has ¢, # ¢} for species A in the bulk. The nonuniversal am-
plitude [, can be determined from the corresponding correla-
tion length /, which is experimentally accessible by measur-
ing the scattering structure factor for various concentrations
¢y > ¢y at T=T,. This nonuniversal amplitude is actually re-
lated to the two independent nonuniversal amplitudes &; and
C [see the discussion below Eq. (2)] by the expression [20]

~ g(é V/B(&)V/}/
10—56(6;) &, (15)

where 6 and vy are the standard bulk critical exponents and
0, and R, are the universal amplitude ratios [11,12,48] lead-
ing to [0,/(8R)]"7=0.38 in d=3.

So far, for the sphere-plane geometry of the present ex-
periment there are no theoretical results available for the
critical Casimir force for thermodynamic states which lie off
the bulk critical composition. However, based on the theo-
retical analysis of the critical Casimir force for films [20,49]
and sphere-sphere geometries [20], we expect that along suit-
ably chosen paths of fixed off-critical compositions the criti-
cal Casimir force is strongly influenced by capillary bridging
transitions. Moreover, if the bulk field 4 is nonzero, (+,+)
and (—,—) BCs are no longer equivalent.

2. Bridging transition

A bridging transition is the analog of capillary condensa-
tion [50] for geometries in which one or both surfaces are
nonplanar. (However, there is a conceptual difference.
Whereas capillary condensation corresponds to an actual
shift of the bulk phase diagram, bridging transitions are in-
terfacial phase transitions which leave the bulk phase dia-
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CP  a-—phase
bridge

FIG. 4. (Color online) Schematic phase diagram of a binary
liquid mixture with a lower demixing transition point in terms of
temperature 7" and concentration ¢, of the A species. The solid
curve encloses the two-phase region separating via first-order phase
transitions the « and B phases rich in A and B species, respectively,
terminating at the CP. The dashed line indicates the first-order
bridging phase transition which occurs if a fluid mixture is confined
between a planar wall and a sphere of radius R and at distance L
possessing the same adsorption preference, here for the a phase.
The bridging transition ends at the critical point Q and separates a
region in the bulk phase diagram in which a phase preferable by
walls condenses and forms a bridge connecting the wall and the
sphere, from the region in the bulk phase diagram where such a
bridge is absent. Although the bridging transition is a (quasi-) first-
order phase transition, in the bulk phase diagram it is described by
a line instead of a coexistence region, because it is an interfacial
phase transition.

gram unchanged but can be described as if effectively the
bulk phase boundary of first-order phase transitions is shifted
[51,52].) It occurs at temperatures for which two phases may
exist, i.e., for T above T, in the case of a binary liquid mix-
ture with a lower consolute point, and it depends on the
adsorption properties of the surfaces. If, say, both surfaces
favor the a phase rich in species A over the $ phase rich in
species B, one expects the « phase to form a bridge between
the surfaces for some chemical potential u, of species A
such that u, <uy’, where wj’ is the value corresponding to
bulk coexistence. Alternatively, this occurs at a concentration
(mole fraction) ¢y <cy’ slightly smaller than its value ¢} at
bulk coexistence. If the surfaces favor the B phase, the 8
phase fills the gap between the surfaces forming a bridge for
wa >y, ie., the phase separation line for this morphologi-
cal transition occurs on the other side of the bulk phase dia-
gram, i.e., for ¢, >c}’ (Fig. 4).

Bridging may occur in the presence of thin wetting layers
on both surfaces, i.e., in the partial wetting regimes of the
two individual surfaces [53-55], or if one or both surfaces
are covered by a thick wetting film [52]. Such bridge forma-
tion may be relevant for colloid aggregation or flocculation
of the particles [56,57] (for a summary of the corresponding
experimental and theoretical work on these phenomena, see
Refs. [51,52]). For the sphere-planar wall geometry relevant
for the present experimental situation, theoretical studies
[54] predict that the bridging transition can occur in the pres-
ence of thin wetting layers coating both surfaces. It is a first-
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order phase transition and ends at a critical point. (Actually,
these bridging transitions are only quasiphase transitions be-
cause they involve strictly speaking only a zero-dimensional
volume [51,52].) For a fixed distance between the wall and
the sphere and fixed chemical potentials, the position of this
critical point is determined by the relation £=R, where R is
the radius of the sphere (see Fig. 4). For small sphere radii
the bridge configuration is unstable, even for very small
sphere-plane separations. On the other hand, bridging transi-
tions are not possible for large sphere-plane separations,
even if the sphere radii are large. The fluid-mediated solva-
tion force between the surfaces is very weak in the absence
of the bridge and it is attractive and long ranged if the cap-
illary bridge is present. Moreover, for R/ ¢ small its strength
is proportional to the sphere-wall separation [54,55], con-
trary to the case of two flat substrates [50] or to the sphere-
sphere geometry [52].

3. Critical Casimir forces for noncritical compositions

For temperatures closer to the critical temperature the sol-
vation force acquires a universal contribution due to the criti-
cal fluctuation of the intervening fluid which turns into the
critical Casimir force. For a one-component fluid near gas-
liquid coexistence w=uo(T) and confined between parallel
plates it has been shown [49] that at temperatures near the
critical temperature 7. a small bulklike field h~Au=pu
—uo(T) <0, which favors the gas phase, leads to residual
condensation and consequently to a critical Casimir force
which, at the same large wall separation, is much more at-
tractive than the one found exactly at the critical point. The
same scenario is expected to apply to binary liquid mixtures,
i.e., the Casimir force is expected to be much more attractive
for compositions slightly away from the critical composition
on that side of the bulk phase diagram which corresponds to
the bulk phase disfavored by the confining walls. This has
been studied in detail in Ref. [20] by using the standard
field-theoretic model within mean-field approximation.
These studies of the parallel plate geometry have been ex-
tended to the case of two spherical particles of radius R at a
finite distance L [20]. The numerical results for the effective
pair potential, as well as the results obtained by using the
knowledge of the force between parallel plates and then by
applying the Derjaguin approximation, valid for L <R, show
that at 7=T, the dependence of the Casimir force on the
composition exhibits a pronounced maximum at a noncritical
composition. One expects that such a shift of the force maxi-
mum to noncritical compositions results from the residual
capillary bridging and that the direction of the shift relative
to the critical composition depends on the boundary condi-
tions. If the surfaces prefer the « phase rich in species A, by
varying the temperature at fixed off-critical composition c,,
one observes that for small deviations |c,—c§|<c, the po-
sition of the maximum of the Casimir force as function of
temperature is almost unchanged, while the absolute value of
the maximal force increases considerably by moving away
from ¢4 to compositions c, <c4. The overall temperature
variation is, however, similar to that at ¢, provided one stays
sufficiently close to the critical composition. For composi-
tions ¢, slightly larger than the critical composition, ¢4 > cj,
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the critical Casimir force as a function of temperature is ex-
pected to behave in a similar way as for ¢, <cf, but the
amplitude of the force maximum should be much weaker and
should decrease for increasing c,. At compositions further
away from cj, i.e., off the critical regime, due to the small
bulk correlation length the Casimir force is vanishingly small
unless the aforementioned bridging transition is reached by
varying the temperature.

The case of a sphere against a planar wall has not been
studied theoretically. However, we expect a similar behavior
of the effective forces as the one for two spheres.

III. EXPERIMENT
A. Method: Total internal reflection microscopy
1. Basic principles of TIRM

TIRM is a technique which allows one to determine the
potential @ of effective forces acting on a single colloidal
particle suspended in a liquid close to a planar substrate, with
a force resolution down to the order of femtonewton. The
potential @ is obtained from the probability distribution to
find the surface of the particle at height z above the substrate,
which is determined by monitoring the Brownian motion of
the particle in the direction perpendicular to the substrate. In
TIRM measurements this is achieved by creating an evanes-
cent light field at the substrate-liquid interface which pen-
etrates into the liquid. The intensity of the evanescent field
varies strongly with the distance from the substrate. A single
colloidal particle scatters light if it is illuminated by such a
field. From this scattered intensity it is possible to deduce the
position of the particle in the evanescent field, i.e., to deter-
mine z and its time dependence [58,59].

The basic experimental setup is presented in Fig. 5. A
p-polarized laser beam (A=473 nm, P=2 mW) is directed
from below onto the interface between the bottom of a silica
glass cell (a cuvette with a chamber to accommodate a fluid
film of thickness of 200 wm) and the liquid containing the
colloidal particle. The illumination angle 6; (formed with the
substrate normal) is larger than the critical angle 6, of total
internal reflection. Due to total internal reflection, an evanes-
cent wave penetrates into the medium with lower refractive
index, here the liquid, and its intensity I ,(z) decays expo-
nentially as a function of the distance z from the glass-liquid
interface,

Iev(Z) = Iev(o)e_gz- (16)

The decay constant [ defines the penetration depth (',
which is given by [59]

A
;! - (17)

= 2 2
477%1 sin” 6; — njjq

glass

where \ is the wavelength of the illuminating laser beam in
vacuum, and ng,e and nyq are the refractive indices of the
glass and the liquid, respectively. In our experiment (see, cf.
Sec. IIIB) the critical binary mixture (liquid) has nyq
=1.384 whereas the silica glass (substrate) has rg,=1.464
(> nyg), resulting in 6,=71°. A colloidal particle with a re-
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FIG. 5. (Color online) Data acquisition system (see main text for
details). The green laser light generated by the optical tweezers is
deflected by a double prism into the microscope objective (in the
figure represented as a gray vertical cylinder above the spherical
particle) and it provides an optical potential which confines the
spherical colloid laterally. The blue light which is scattered by this
particle out of the evanescent field of intensity /.,(z) is collected by
the same microscope objective, focused and then optically directed
into the photon counter via a combination of prisms and mirrors
(schematically represented in the upper part of the figure).

fractive index gy >nyq (in our experiment the polystyrene
colloids have n.,;=1.59) at a distance z away from the sur-
face scatters light from the evanescent field. Within the well
established data evaluation model for TIRM intensity, the
light scattered by the particle has an intensity I, which is
proportional to 1.1 ,(z) [59] and therefore depends on the
distance z. Care has to be taken in choosing parameters for
the penetration depth and the polarization of the illuminating
laser beam in order to avoid optical distortions due to mul-
tiple reflections between the particle and the substrate, which
would spoil the linear relation between I, and I,,(z). In this
respect, safe parameter regions are known to be small pen-
etration depths <250 nm and p-polarized illumination as
used in the present experiment [60,61]. As a result of this
relation, the scattered light intensity /. exhibits an exponen-
tial dependence on the particle-wall distance with exactly the
same decay constant {~' ({7'=200%2 nm in our experi-
ment) as the evanescent field intensity I.,,

L(2) =1y, (18)

where the scattered intensity [, at contact z=0 depends on
the laser intensity, the combination of refractive indices, and
the penetration depth. As will be discussed below, the knowl-
edge of I, is important to determine the particle-substrate
distance from the scattered intensity /. In principle 7, could
be measured by the so-called sticking method [59] according
to which the particle is stuck on the substrate due to the
addition of salt to the liquid in such a way as to suppress the
electrostatic stabilization which normally repels the particle
from the substrate. However, in the system we are interested
in this is not practicable given the large concentration of salt
(>6 mM) required to force the particle to stick to the sur-
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FIG. 6. Data analysis. (a) Raw data for the total number of scattered photons n.(7) detected at a certain time ¢ within a time interval
Ar=1 ms from the single photon counter as a function of time, taken for a sampling time sy, = 15 min. (b) Histogram calculated from this
time series yielding the distribution function p.(ny.) of the number ng. of scattered photons. (c) The knowledge of the relation [see Eq. (18)]
between the scattered intensity /.= ng./At and the position z of the colloid in the evanescent field allows one to determine the probability
distribution p,(z) = {ne(2) psc(ny(z)) for the particle-substrate distance z from py.(n,.) and therewith by inversion of the Boltzmann factor the

interaction potential. Further details are given in the main text.

face and the compact design of the experimental cell which
limits the access to the sample. Instead, as described further
below, we circumvent this problem by using a hydrodynamic
method [62] for the absolute determination of the particle-
substrate distance.

In Sec. IT we mentioned that, upon approaching the criti-
cal point of the binary liquid mixture, critical adsorption pro-
files form near the surfaces of the substrate and of the col-
loid. These concentration profiles induce a spatial variation
of the refractive index, which deviates from the assumed
steplike variation underlying Egs. (16) and (17) (see, e.g.,
Ref. [63]). Deviations from the functional form given by Eq.
(16) are pronounced if the correlation length £ becomes com-
parable with the wavelength N\ of the laser light, which is not
the case for the experimental data obtained here, for which
A=473 nm and £<100 nm (see, cf. Figs. 4, 15, and 16).

In a typical TIRM measurement run, the vertically scat-
tered intensity I..(f)=1I,.(z(¢)) (photons/s) is recorded by a
photomultiplier connected to a single photon counter (see
Fig. 5) which counts the total number of scattered photons
[see Fig. 6(a)],

t+At
ng (1) = f dr'I (") = I (1)At, (19)

detected within a time interval Ar=1 ms [64]. The value of
ng(t) is then acquired with a frequency f,,,=250 Hz for a
total duration 7y, = 15 min. The resulting set of data is then
analyzed as described below in Sec. III A 2. Consecutive in-
tensity data I..(7), i.e., ny(f) acquired with a larger frequency
fsamp turn out to be strongly correlated in time. Accordingly,
their acquisition does not contribute to the reduction of the
statistical errors affecting the final estimate for the potential,
as will be discussed in, cf. Sec. IV B 2. This observation
motivates our choice fym,=250 Hz.

In addition to the detection optics, an optical tweezer is
implemented in the TIRM setup [65] in order to be able to
control the lateral position of the particle. The tweezer is
created by a laser beam (N yeerer=332 nm) incident on the
particle from the direction perpendicular to the substrate and
focused by the microscope objective used also for the detec-

tion (see Fig. 5). Via this tweezer it is possible to conve-
niently position the probe particle within the measuring cell
and to restrict its lateral diffusion to a few microns so that the
particle does not diffuse out of the field of view of the de-
tection system. In addition, the tweezer also exerts a light
pressure [66] onto the particle, increasing significantly its
effective weight (in the specific case considered here from
~1.1kgT./ pm to ~7kgT,./um, see, cf. Sec. Il A3 and
Refs. [67,68] for details). In our experiment the tweezer is
typically operated at a low power of P=2 mW, but even at
the largest power (P, =25 mW) we used to trap and move
the particle no effects of local heating, such as the onset of
phase separation in the liquid, were observed due to the laser
of the tweezer.

2. Data analysis

In order to determine the potential ® of the effective
forces acting on the colloidal particle, one constructs a his-
togram out of the values of ny(7) [see Eq. (19)] recorded in
the time interval fgn,, in such a way as to determine the
probability distribution function py(ng) for the particle to
scatter ne=I, At photons in a time interval Az. Within the
sampling time g, there are fym,famp=N registration of
counts. If N* is the number of registrations which yield a
certain count n:c, the probability psc(n:;) of n;kc to occur is
N*/N. By using py.(ns.)dn,=p.(z)dz and Eq. (18), this prob-
ability distribution p¢.(ny) can be transformed into the prob-
ability

P:(2) = Iy (2)pse(ng.(2) (20)

for the particle-substrate distance z. In turn, in thermal equi-
librium at temperature 7, the probability p.(z) is related to
the particle-wall interaction potential ®(z) by the Boltzmann
factor

p.(2) = C exp[— ®(2)/(kgT)], (21)

where kg7 is the thermal energy and C a normalization con-
stant. Equation (21) holds because, due to the high dilution
of the colloidal suspension, the single colloidal particle under
observation does not interact with other particles. As a result,

061143-10



CRITICAL CASIMIR EFFECT IN CLASSICAL BINARY...

1.0 b

0.8+
0.6 R
DS

~
_|
8 041 ]

0.2+ R

0.0

2 3
z/R

_] =N
N
W

0

FIG. 7. Diffusion coefficient D | of a spherical particle of radius
R moving perpendicular to a wall at a distance z [62,71]. D, is the
bulk diffusion coefficient. Note that for the present experimental
conditions z/R<1 and thus this distance dependence is
pronounced.

from the knowledge of pg.(ng) it is possible to determine
®(z) up to an irrelevant constant related to C and to the
overall normalization of pg(ny). For each bin of the histo-
gram of pg(ng), the corresponding distance z(n,.) is calcu-
lated via inversion of Eq. (18),

Z(nsc) == g—l ln[nsc/(l()At)] = Zexp(nsc) =20, (22)

where ze,,(n.)=—{"" Inny is given in terms of experimen-
tally accessible quantities (i.e., ny and ¢). This provides the
position of the particle up to the constant zy=—¢"" In(/,At) as
the experimentally yet unknown position of the wall [69]
[I,.(z=0)=1,]. In order to determine z, for all data sets, we
have employed the so-called hydrodynamic method [62],
which is based on the fact that due to hydrodynamic interac-
tions the diffusion coefficient D of a colloidal particle at a
distance z from the wall strongly depends on z. Moreover,
near a wall the diffusion coefficient becomes also spatially
anisotropic with the relevant value for TIRM measurements
being D |, which refers to the diffusion occurring in the di-
rection perpendicular to the wall. Its spatial dependence can
be expressed as

D, =D.f(z/R), (23)

where D,.=kgT/(67r5R) is the bulk diffusion coefficient of a
spherical particle of radius R in a homogeneous fluid with
viscosity 7 at temperature 7. (For the water-lutidine mixture
we use in our experiments, the value of 7 has been measured
in Ref. [70] as a function of temperature T and composition,
with 7=2.09X 1073 Pas at T=31°C and at the critical
composition.) The reduced mobility function f(v) was calcu-
lated in Ref. [71] and can be well approximated by [62]

6v>+2v

— . 24
602 +9v +2 (24)

flw)=
A plot of this theoretically predicted distance-dependent
diffusion coefficient D | is shown in Fig. 7. A well estab-
lished method [62] to determine the absolute particle-wall
distance is to calculate the apparent diffusion coefficient

D,,, which is the weighted average of D, (z) over the
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distances sampled by the colloidal particle, ie., D,p,
=[{dzD | (2)e™*p_(2)/ [§dze™*¢p,(z), where the exponential
factors in the numerator and denominator reflect the spatial
dependence of I.(z) [see Eq. (18) and below]. This apparent
diffusion coefficient can be experimentally determined from
the initial slope of the autocorrelation function C(5)
=(n.(t)ny(t+ 6t)), of the scattering intensity [62],

__ 1o
w2 0(0)

where the prime ’denotes the derivative with respect to &t.
In order to determine z, one calculates the apparent diffusion
coefficient Dy, i 0N the basis of D (z) and of the experi-
mentally determined probability distribution p, which is
given by the parametric plot of {n.p..(n.) as a function of
Zexp(7se) =2 upon varying ny, [Egs. (20) and (22)], with Z; as
the yet unknown position of the wall, and according to which
the colloidal particle samples distances. In turn, the value
Z9=2¢ can be determined by requiring that D,,=Dpp care- A
detailed description of this procedure can be found in Ref.
[62]. The uncertainty in the determination of z, via this
method (see Appendix B of Ref. [62]) is primarily deter-
mined by the uncertainties of the particle radius [see Egs.
(23) and (24)] and of the penetration depth {~! [see Eq. (25)].
Considering the experimental parameters and errors of our
measurements, the resulting uncertainty in the particle-
substrate distance z can be estimated to be =30 nm for all
plots shown in the following.

We emphasize that it is sufficient to determine z, at a
certain temperature in order to fix it for all the measured
potential curves at different temperatures. Indeed the inten-
sity 1,,(0) of the evanescent field at the glass-liquid surface
[as well as 7', see Eq. (17)] depends on temperature via the
temperature dependence of the optical properties of the glass
and the liquid. In turn, this would imply a variation in the
critical angle 6. with 7, which was actually not observed
within the range of temperatures investigated here. The in-
tensity 7, I.,(0), which determines z, and which is recorded
by the photomultiplier, is in principle affected by the
temperature-dependent background light scattering due to
the critical fluctuations within the mixture (critical opales-
cence). For the typical intensities involved in our experiment
and for the temperature range studied, the contribution of
this background scattering is actually negligible and, as a
result, z does not change significantly with temperature. The
hydrodynamic method, however, requires the knowledge of
the viscosity 7 of the mixture, which depends on temperature
and sharply increases upon approaching the critical point
[70] due to critical fluctuations. These fluctuations might in
addition modify the expression of D (z). In order to reduce
this influence of critical fluctuations we have chosen 7.
—3 K as the reference temperature for determining z,, corre-
sponding to a temperature at which no critical Casimir forces
could actually be detected in the interaction potential.

(25)

3. Interaction potentials

Under the influence of gravity, buoyancy, and the radia-
tion field of the optical tweezer as external forces, the total
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potential ® of the colloidal particle floating in the binary
liquid mixture, as determined via TIRM, is the sum of four
contributions,

D(z2) = D(2) + Gepiz + P(2) + Ppsey.- (26)

In this expression @ is the potential due to the electrostatic
interaction between the colloid and the wall and due to dis-
persion forces acting on the colloid; it is typically character-
ized by a short-ranged repulsion and a long-ranged attrac-
tion. The combined action of gravity, buoyancy, and light
pressure from the optical tweezer is responsible for the linear
term Gz in Eq. (26) (see, e.g., Ref. [66]). ®(z) is the
critical Casimir potential arising from the critical fluctuations
in the binary mixture. The last term @, is an undeter-
mined, spatially constant offset different for each measured
potential which accounts for the potentially different normal-
ization constants of the distribution functions py. and p,.
While the first two contributions are expected to depend
mildly on the temperature 7" of the fluid, the third one should
bear a clear signature of the approach to the critical point.
These expectations are supported by the experimental find-
ings reported in Sec. IV. The typical values of G for the
measurements presented in Sec. IV are G.y=7.2kpT/pum
and G ;= 10.0kzT/um for the colloids with diameters 2R
=2.4 and 3.68 um, respectively [67]. Far enough from the
surface, @, and ®. are negligible compared to the linear
term and therefore the typical potential d(z) is characterized
by a linear increase for z large enough. Accordingly, upon
comparing potentials determined experimentally at different
temperatures, the corresponding additive constants @ .
which are left undetermined by the TIRM method, can be
fixed consistently such that the linearly increasing parts of
the various @ coincide. However, it may happen that at some
temperatures the total potential ® develops such a deep po-
tential minimum that the colloid cannot escape from it and
therefore the gravitational tail is not sampled. If this occurs
the shift of this potential by a constant cannot be fixed by
comparison with the potentials measured at different tem-
peratures. In order to highlight the interesting contributions
to the potentials, the term Gz, common to all of them, is
subtracted within each series of measurements and for all
boundary conditions. Accordingly, the remaining part of the
potential—displayed in the figures below—decays to zero at
large distances.

On the other hand, closer to the substrate, the (nonre-
tarded) van der Waals forces contribute to ®(z) with a term
(see, e.g., Ref. [72], Table S.5.b)

All 1
) =——| =+ ——-In(1+2/9) |, 27
o,vdw(Z) 6 5+ 2+ 8 n(1 +2/6) (27)

where A is the Hamaker constant and 6=z/R. As & increases,
this term crosses over from the behavior ®; 4w(z<R)
=~—(A/6)(R/2) to Dy qw(z>R)=-(2A/9)(R/z)’. The de-
pendence of ®y.qw(z<<R) on z is the same as the
one of ®(z<&,R) [see Eq. (12)] and therefore their relative
magnitude is controlled by |®g qw(z<R)/®(z<&,R)|
=[A/(kgT)]/[60©(0)]=2.4/[60(0)] for a critical point at T
=300 K and a typical value of the Hamaker constant A
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=10"2"J. Taking into account that O ,)(0)=2.5 and
0O, (0)=15 it is clear that in this range of distances the
critical Casimir potential typically dominates the (nonre-
tarded) van der Waals interaction. Note, however, that for
small values of z both of them become negligible compared
to the electrostatic repulsion. For larger values of R<z<<§,
the Casimir force still dominates the dispersion forces, as
discussed in detail in Refs. [19,20]. However, for the present
experimental conditions, the distance z is comparable to the
bulk correlation length & and actually most of the data refer
to the case £=<z=<R, with the values of the scaling variables
ranging between z/&é=10 and z/R=0.6 for distances at
which the corresponding potential is still experimentally de-
tectable. Accordingly, with the above estimate for the poten-
tial ratio, one can conservatively estimate [Py qw(z
~0.6R)/ D(z~ 10&)|=[A/ (kgT)](0.2/|©(10)|) =0.2, where
0, (10)=-0, ,)(10)=2.5. Retardation causes the van
der Waals potential to decay as a function of z more rapidly
than predicted by Eq. (27). This additionally reduces the con-
tribution of @ 4w compared with @ . In the analysis of the
experimental data in Sec. IV we shall reconsider the Ha-
maker constant A for the specific system we are dealing with.

In order to achieve the accuracy of the temperature con-
trol needed for our measurements we have designed a cell-
holder rendering a temperature stability of =5 mK. This has
been accomplished by using a flow thermostat coupled to the
cell holder with a temperature of (30.50*0.01) °C function-
ing as a heat sink and shield against temperature fluctuations
of the environment. In order to fine tune the temperature the
cell was placed on a transparent indium tin oxide (ITO)
coated glass plate for a homogeneous heating of the sample
from below. The voltage applied to the ITO coating was
controlled via an Eurotherm proportional-integral-derivative
controller for approaching the demixing temperature. The
controller feedback provides a temperature stability of
*2 mK at the position of the Pt100 sensor used for tempera-
ture measurements. However, since the probe particle is dis-
placed from the sensor by a few millimeters, some additional
fluctuations have to be considered. From the reproducibility
of the potential measurements and from the relative tempera-
ture fluctuations of two independent Pt100 sensors placed on
either side of the cell we inferred a =5 mK stability of the
temperature at the actual position of the measurement. The
highly temperature sensitive measurements were affected
neither by the illuminating nor by the tweezing lasers due to
moderate laser powers and due to low absorption by the
probe particle and by the surface. Although all measurements
were carried out upon approaching the demixing tempera-
ture, the light which is increasingly scattered in the bulk
background by the correlated fluctuations of the binary liquid
mixture exposed to the evanescent field turned out to be
negligible compared to the light scattered directly by the
colloid. The effects of the onset of critical opalescence are
significantly reduced by the fact that the illuminating optical
field rapidly vanishes upon increasing the distance from the
substrate and due to the still relatively small values of the
correlation length.

B. Binary liquid mixture and boundary conditions

For providing the critical fluctuations we have chosen the
binary liquid mixture of water and 2,6-lutidine near its de-
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FIG. 8. (Color online) Bulk phase diagram of the binary liquid
mixture of water and 2,6-lutidine (dimethylpyridine C;HgN)
[56,73] at constant volume. The relevant thermodynamic variables
are the temperature 7" and the mass fraction ¢; of lutidine in the
mixture. Open symbols in panel (a) refer to actual experimental
data [73]. The schematic side view of a vertical sealed cell filled
with the binary liquid mixture is shown by insets (i) and (ii) of
panel (a) for thermodynamic states outside and inside of the coex-
istence loop, respectively. In (ii)) W and L indicate the water- and
the lutidine-rich phases, respectively. The mixture separates into the
lutidine-rich and the water-rich phases within the two-phase coex-
istence area encircled by the solid first-order transition line. At the
lowest and highest points (LCP and UCP, respectively) of this line
the demixing transition is continuous. The detailed phase diagram
in the vicinity of the lower critical point is shown in panel (b),
together with the typical thermodynamic paths (dashed vertical
lines) experimentally investigated here within the gray region as
well as for ¢;=0.2.

mixing phase transition. The bulk phase diagram of such a
binary liquid mixture prepared at room temperature, ambient
pressure, and sealed in a cell [73] (constant volume) is re-
ported in Fig. 8(a). It is characterized by a one-phase region
(disordered phase) in which the two components form a
mixed solution and which surrounds the closed loop of the
two-phase region (ordered phase) in which these components
segregate into a water-rich and a lutidine-rich phase. The
first-order transition line delimiting the two-phase coexist-
ence region, within which the two ordered phases form an
interface, ends in a lower critical demixing point (LCP) [see
Fig. 8(a)] at the lutidine mass fraction ¢ =0.28 and the criti-
cal temperature 7,=307.15 K [56]. The upper critical de-
mixing point (UCP) [see Fig. 8(a)] is located at high tem-
peratures and therefore it occurs within the liquid phase only
at pressure values above ambient ones.

The choice of this specific binary liquid mixture as the
critical medium is motivated by the fact that its properties
(bulk phase diagram, refractive index, viscosity, etc.) are
known rather well and are documented in the literature, as
this mixture has been extensively employed in the past for
the study of phase separation per se or as a solvent of col-
loidal dispersions. A clear experimental advantage is pro-
vided by the fact that the water-lutidine mixture at ambient
pressure has a lower critical point slightly above room tem-
perature which can be conveniently accessed from the one-
phase region by heating the sample. Alternative binary liquid
mixtures with a lower demixing point close to room tempera-
ture are formed by water and, e.g., 2,5-lutidine (7.,
=13°C), 24-lutidine (7,=23°C), triethylamine (7.
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=18 °C), and n-butoxyethanol (7,=49 °C). The addition
of a suitable amount of a third component to some of these
binary liquid mixtures allows one to shift the critical tem-
perature of demixing basically at will. For example, by add-
ing 3-methylpyridine to the presently used mixture of 2,6-
lutine and water it is possible to gradually shrink the
coexistence loop in Fig. 8(a), causing an upward shift of 7,
of as much as 30 °C. Analogously, even though 3-methyl-
pyridine is always miscible with normal water, it exhibits a
coexistence loop if mixed with heavy water, with a lower
critical point at 7,.=39 °C. The addition of normal water to
this demixing binary liquid mixture of heavy water and
3-methylpyridine causes an upward shift of 7, until the co-
existence loop disappears at a double critical point with
T9°=78 °C [73]. The variety of available substances and the
tunability of the critical temperature by suitable chemical
additions allow one to generate critical Casimir forces for a
conveniently wide range of temperatures.

In our experiment the mixture is prepared under normal
conditions (room temperature and ambient pressure) and
then it is introduced into the sample cell which is afterwards
sealed with Teflon plugs in order to hinder the mixture from
evaporating. Although we have no control on the resulting
pressure p of the mixture, the fact that the cell is not her-
metically sealed and that small air bubbles might be trapped
within it should keep p very close to its ambient value.
Within the limited range of temperatures we shall explore in
the experiment, possible pressure variations are not expected
to lead to substantial modifications of the phase diagram
(e.g., shifts of the critical point) compared to the ones at
constant pressure or volume. The order parameter ¢ for the
demixing phase transition can be taken to be the difference
between the local concentration c;(x) (mass fraction) of lu-
tidine in the mixture and its spatially averaged value c¢;. Ac-
cordingly, a surface which preferentially adsorbs lutidine is
referred to as realizing the (+) boundary condition for the
order parameter given that it favors ¢> 0, whereas a surface
which preferentially adsorbs water leads to the (—) boundary
condition.

The experimental cell containing the binary liquid mix-
ture and the colloid is made up of silica glass. Depending on
the chemical treatment of its internal surface, one can change
the adsorption properties of the substrate so that it exhibits a
clear preference for either one of the two components of the
binary mixture. In particular, treating the surface with NaOH
leads to preferential adsorption of water (—), whereas a treat-
ment with hexamethyldisilazane (HMDS) favors the adsorp-
tion of lutidine (+) [74], as we have experimentally verified
by comparing the resulting contact angles for water and lu-
tidine on these substrates. As colloids we used polystyrene
particles of nominal diameter 2R=3.69 and 2.4 um, the lat-
ter possessing a rather high nominal surface charge density
of 10 uC/cm?. Size polydispersities of these particles are
2% and 3%, respectively, corresponding to ~ =70 nm.
(These nominal values are provided in the data-sheets of the
company producing the batch of particles, see Ref. [37]
for details.) The adsorption properties of polystyrene parti-
cles in a water-lutidine mixture have been investigated
in Refs. [75,76], with the result that highly charged
(=3.8 uC/cm?) colloids preferentially adsorb water (highly
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TABLE 1. Experimental realization of all possible (particle and
substrate) symmetry-breaking boundary conditions, where (+) in-
dicates the preferential adsorption of lutidine and (—) the preferen-
tial adsorption of water. The treatments of the substrate affect only
its surface properties.

Colloid diam. 2R

(particle, substr.)

Substrate treat. 3.69 um 2.4 pum
HMDS (+,+) (—,+)
NaOH (+,-) (—=,—)

polar) whereas lutidine is preferred at lower surface charges.
Even though we did not independently determine these ad-
sorption properties, the results of Refs. [75,76] and the cor-
responding nominal values of the surface charges of the col-
loids employed in our experiment suggest that the
polystyrene particles of diameter 2R=3.69 um [2R
=2.4 um] have a clear preference for lutidine (+) [water
(—)]. A posteriori, these presumed preferential adsorptions
are consistent with the resulting sign of the critical Casimir
force observed experimentally. Depending on the surface
treatment of the cell and the choice of the colloid one can
realize easily all possible combinations of (particle, sub-
strate) boundary conditions (see Table I).

For a given choice of the particle-substrate combination
with its boundary conditions and for a given concentration c;,
of the mixture we have determined the interaction potential
® [see Eq. (26)] between the colloid and the substrate as
described in the previous subsection, starting from a tem-
perature T below the critical point in the one-phase region
and then increasing it toward that of the demixing phase
transition line at this value of ¢;. It might happen that, as a
result of leaching, the water-lutidine mixture slowly (i.e.,
within several days) alters the surface properties of the col-
loidal particles we used in the experiment. In order to rule
out a possible degradation of the colloid during the experi-
ment, we verified the reproducibility of the observed effects
after each data acquisition.

IV. RESULTS

In Figs. 10-13 and 17 we report the experimentally ob-
tained interaction potentials @ as functions of the particle-
wall distance z for various values of the temperature 7, both
at critical (Figs. 10-13) and off-critical concentrations (Fig.
17). In all the cases presented, the gravitational and offset
parts of the potentials [see Eq. (26)], which turn out to be de
facto independent of the temperature 7, have been subtracted
in such a way that the resulting potentials vanish for large
values of z. However, those potentials, for which the gravi-
tational tail could not be sampled (see, e.g., Figs. 12 and 17),
cannot be normalized like the others by this requirement.

Depending on the concentration of the mixture, two quali-
tatively different behaviors are observed, which are dis-
cussed in Sec. IV B for ¢;=cj and in Sec. IV C for ¢; # cj.
However, in the next section we first discuss the experimen-
tal results for the potentials measured far away from the tran-
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sition line and the comparison of them with theoretical pre-
dictions. This provides important insight into the effective
background forces to which the critical Casimir forces add
upon approaching the critical point.

A. Noncritical potentials

In all the cases reported here, sufficiently far from the
transition line one observes a potential which appears to con-
sist only of the electrostatic repulsion between the colloid
and the substrate and which can be fitted well by

(Do(Z) = kBTe_K(Z_Zes), (28)

within the experimentally investigated range of values of z.
Here ! is the Debye screening length and z., the value of
the distance z at which ®y(z=z.)=kgT. (z.s is expected to
depend, inter alia, on the surface charge and on the radius of
the colloid.) For the potential in Fig. 10 which corresponds
to 7.—T=300 mK, a fit of « yields x'=12* 3 nm, which is
compatible with the estimate «~'=10 nm derived from the
standard expression k=1\e?,p;/[£5;,(0)kgT] (see, e.g., Ref.
[72]), where e is the elementary charge, &;4(0) is the static
permittivity of the mixture (see below), and p; is the number
density of ions assumed to be monovalent and estimated in
Ref. [75] for the dissociation of a salt-free water-lutidine
mixture. Within the range of distances z sampled in our ex-
periment there is no indication of the presence of an attrac-
tive tail in (), which on the other hand is generically ex-
pected to occur due to dispersion forces, described by a
potential as given in Eq. (27). In order to compare this ex-
perimental evidence with theoretical predictions, below we
shall discuss the determination of the Hamaker constant A in
Eq. (27) on the basis of the dielectric properties of the ma-
terials involved in the experiment. The relation between
them is provided by (see, e.g., Ref. [72])

o0
3 €lass — €lig Ecoll — Eli
- y ©glass lig ©coll lig
A(z) = 2kBTE R,(2)
n=0 Sglass + gliq Econ + Sliq iw,

= An=0 +An>0’ (29)

where the permittivities & of the various materials are evalu-
ated at the imaginary frequencies iw,, with w,=27kgTn/h
=nX2.5X 10" rad/s at T=300 K. [Note that the imaginary
part of the complex permittivity e(w) as a function of the
complex frequency w vanishes on the imaginary axis Re w
=0 [72].] The factor R,(z) accounts for retardation and, ne-
glecting the fact that in the three different media light propa-
gates with different velocities (i.e., for R, assuming ..
= gjjq =€) it takes the form R,=(1+7,)e”"». The ratio r,
=27,(z)/w," quantifies the relevance of retardation: heuris-
tically, a thermally fluctuating electric dipole within, e.g., the
glass generates an electric field which travels at least a dis-
tance z across the liquid, taking a minimal time 7,(z)
=z/[c/Veygliw,)], before inducing an electric dipole within
the colloid. Such an induced dipole, in turn, generates an
electric field which travels back to the original dipole and
interacts with it. However, such an interaction is reduced by
the fact that the original dipole has a lifetime w;1 and might
have decayed during the minimal time 27,(z) it takes the
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FIG. 9. (Color online) Permittivities e(iw) of the materials rel-
evant for our experiment as functions of the frequency w (rad/s) on
a logarithmic scale. As on the left, from bottom to top, we report the
curves corresponding to pure lutidine, polystyrene (g.y), silica
(£g1as5)> @ water-lutidine mixture with a volume concentration ¢,
=().25 of lutidine (s“q), and pure water. These curves are based on
the parametrizations and on the material properties reported in Refs.
[72,77]. The four vertical lines indicate the frequencies {®,},=1. .4
which within our approximation enter into the determination of the
Hamaker constant in Eq. (29). [Note that Im e(w)=0 if, as in the
present case, Re w=0 [72].]

electric field to do the roundtrip [72], which is the case for
r,=27,(z)/ ;' = 1. The prime in Eq. (29) indicates that the
contribution of the static permittivities n=0 is to be multi-
plied by 1/2 (see, e.g., Ref. [72]), resulting in the term A,_,.
Within a first approximation, in Eq. (29) the retardation fac-
tor R, does not affect those terms with r, <1, corresponding
to R,=1 for them, while it exponentially suppresses those
terms with r,>1. Accordingly, only the former contribute
significantly to A,~ and retardation is accounted for by sum-
ming in A,-, only the terms corresponding to w,
<[c/Ve(iw,)]/(2z), where Ve(iw,)=ny, (see dash-dotted
line in Fig. 9 for n=1,...,4) is the refractive index of the
liquid. The expression in Eq. (29) is valid generically for a
film and only in the nonretarded regime R,=1 for the
sphere-plate geometry. However, even for the latter geometry
an estimate of the order of magnitude of the effects of retar-
dation can be inferred simply by restricting the sum in
Eq. (29) to the values of n corresponding to r,<1 so that
R,=1.

The parameters of our experiment, i.e., z=0.1 um and
njiq=1.38 yield o, <1.1X 10" Hz, i.e., n<4 at T=300 K,
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with w,_; . 4 in the infrared spectrum. The contribution A,
of the zero-frequency mode is actually subject to screening
by the ions in the liquid solution, characterized by the Debye
screening length «~! which also controls the exponential de-
cay of the electrostatic contribution to ®,. This means that
A,_o is not a constant but acquires a z dependence. This is
accounted for by a multiplicative correction factor Ry(z)
=(1+2kz)e”>< multiplying A,_, as given by Eq. (29); we
note that Ry(0)=1= R(z). A parametric representation of the
permittivity ew(iw) of pure water can be found in Table L.2.1
in Ref. [72]. In the part of the spectrum over which the sum
in Eq. (29) runs, for polystyrene the permittivity e, (iw) is
actually almost constant e, =n>,=2.53 (see, e.g., Table
L.2.3 in Ref. [72] for a parametrization). For lutidine and
silica, the parameters which characterize the corresponding
permittivities &; (iw) and &,s,(iw) are summarized in Table I
of Ref. [77]. In order to calculate the dielectric permittivity
gjqliw) of the homogeneous water-lutidine mixture on the
basis of ey, €1, and the lutidine volume fraction ¢; =0.25,
one can use the Clausius-Mossotti relation, as explained in
Ref. [77]. The resulting permittivities are reported in Fig. 9.
With these elements at hand and within the approximation
discussed above one can calculate an upper bound to the
value of A,~ which accounts for retardation, finding

A,~0(z= 0.1 um) < 0.06kgT = 0.025 X 1072 J. (30)

In addition, from Eq. (29) and from the material parameters
one finds

A,—o = 0.46kgT, (31)
resulting in a screened contribution Aff:%) (z)=A,oR(z), with
x~'=12 nm, which is actually negligible compared to the
electrostatic potential ®, [see Eq. (28)]: A,fj{))(z)/ Dy(z)
<A,_pe %< 6X 10" (cf. Table II for typical values of x
and z.,). Taking into account Eq. (27), the contribution of
A,i‘“zc(r)) to ®gqw(z) becomes comparable to the electrostatic
one only for z/R=<10"* which is well below the range
z/R=0.1 actually investigated in our experiment. On the
other hand, for z=0.1 um, Ai;c(r))zo.004kBT, and due to its
exponential decay with z, we expect this contribution to
be negligible compared to the value A,~y(z=0.1 um) in
Eq. (30). In turn, this value is considerably smaller than the
typical one A =10"2" J we have used in Sec. IIT A 3 in order
to compare dispersion forces with the critical Casimir poten-
tial. Accordingly, the conclusion drawn there that the latter

TABLE II. Fit parameters for the noncritical potentials ®,, ., for four boundary conditions and with the
gravitational part subtracted, <I>n0n_cr=<1)oyvdw(z)+A<I>0ffset+kBTe"‘(Z‘zes), where @ qw(z) is given by Eq.
(27). The values reported here correspond to 95% confidence intervals for the parameters.

Tc_T A A(I)offset K_l Zes

BC Fig. (K) (kgT) (kgT) (nm) (nm)
(=,—) 10 0.30 0.2*0.1 0.14=0.08 10.5*0.5 113*1
(+,-) 11 0.90 0.2*0.1 0.2*0.1 17x1 90=*3
(+,+) 12 0.20 0.05%=0.03 0.06 =0.04 159%+0.5 85=*1
(=,+) 13 0.31 0.0=0.2 0.0=0.1 13+1 153 %2

061143-15



GAMBASSI et al.

typically dominates the former is confirmed and reinforced
by the estimate for A given here.

The values just determined for A,_, and A,,~( are meant to
be estimates of their orders of magnitude given that a de-
tailed calculation which properly accounts for retardation
(following, e.g., Ref. [77]) and for possible inhomogeneities
in the media, especially within a binary liquid mixture, goes
beyond the present scope of a qualitative comparison of the-
oretical predictions for the background forces with the actual
experimental data. In this respect, a detailed determination of
the permittivities of the specific materials used in our experi-
ment would be crucial for an actual quantitative comparison
of this contribution to ® with the experimental data. With all
these limitations, the theoretical calculation discussed above
yields A(z=0.1 um)=A,~¢(z=0.1 um)=<0.06kg7. If one
insists on fitting the experimental data for the background
potential ®(z) by including the contribution of the disper-
sion forces as given by Eq. (27) in addition to a possible
overall shift AD .., one finds values for the Hamaker con-
stant A which vary as function of the range of values of z
which the considered data set refers to. This might be due to
the fact that the statistical error affecting the data increases at
larger distances or due to an incomplete subtraction of the
gravitational contribution, which might bias the result. In
particular, in the range 0<z=<0.3 wm we focus on data for
the potentials which have been measured experimentally for
the largest temperature deviation from the critical point and
which are smaller than 6kg7. The choice of this latter value
results from a compromise between avoiding the increasing
statistical uncertainty due to the poor sampling of the sharply
increasing potential and having a sufficiently large number of
data points left at short distances, where ®(z) is not negli-
gible. The resulting parameter values for the four experimen-
tally measured potentials are reported in Table II. The result-
ing values of A are compatible with a rather small Hamaker
constant, in qualitative agreement with the previous theoret-
ical analysis. The combined estimate of the screening length
is somewhat larger than anticipated from the analysis of
one of the potentials [see after Eq. (28)] and results in
k" '=(14+4) nm, again in agreement with independently
available experimental data [75]. In order to highlight the
presence of dispersion forces in this system, here masked by
the strong electrostatic repulsion, one would have to increase
the salt concentration of the solvent in order to reduce sig-
nificantly the screening length x~! which then provides ac-
cess to smaller particle-substrate distances. However, we em-
phasize that a detailed and quantitative study of these
background forces is not necessary in order to identify the
contribution of critical Casimir forces to the total potential
and it is therefore beyond the scope of the present investiga-
tion.

B. Critical composition
1. Experimental results

For the binary liquid mixture at the critical composition
we have estimated (after data acquisition) the critical tem-
perature 7, as the temperature at which anomalies in the
background light scattered by the mixture in the absence of
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the colloid and due to critical opalescence are observed and
visual inspection of the sample displays an incipient phase
separation. The value determined this way has to be under-
stood as an estimate of the actual value of the critical tem-
perature of the water-lutidine mixture and it is used for the
calibration of the temperature scale, which is shifted in order
to set T, to the nominal value 7,.=307.15 K reported in the
literature (see, e.g., Ref. [56]). Note, however, that depend-
ing on the different levels of purity of the mixture, published
experimental values of 7. are spread over the range of
306.54-307.26 K (see, e.g., the summary in Ref. [82]). Due
to the difficulties in determining the absolute value of the
critical temperature, with our experimental setup only tem-
perature differences are reliably determined and the actual
critical temperature of the mixture might differ slightly from
the nominal value 7,.. We shall account for this fact in our
comparison with the theoretical predictions.

Close to T, critical opalescence is expected to occur. It is
indeed ultimately observed upon heating the mixture toward
the critical temperature, leading to an increase in the back-
ground light scattering due to the correlated fluctuations in
the mixture. Even though this might interfere with the deter-
mination of the interaction potential ® via TIRM, within the
range of temperatures we have explored at the critical con-
centration, the enhancement in the background scattering is
actually negligible compared to the light scattered by the
particle.

In Fig. 10 we present the interaction potentials ® as a
function of the distance z for that choice of colloidal particle
and surface treatment which realizes the (—,—) boundary
condition (see Table I). As discussed above, for AT=T,—T
=0.30 K, the potential consists only of the electrostatic re-
pulsion [see Eq. (28)]. Upon approaching the critical point an
increasingly deep potential well gradually develops, indicat-
ing that an increasingly strong attractive force is acting on
the particle. At the smallest AT we have investigated, i.e.,
AT=0.12 K, the resulting potential well is so deep that the
particle hardly escapes from it. In view of the small tempera-
ture variation of ~180 mK, the change of ~10kgT in the
resulting potential is remarkable. This very sensitive depen-
dence on T is a clear indication that in the present case criti-
cal Casimir forces are at work. In the case of Fig. 10 the
maximum attractive force acting on the particle is about
600 fN.

According to the theoretical predictions, one expects the
critical Casimir force to be repulsive for asymmetric bound-
ary conditions (+,—) or (—,+). In our experiment we can
easily realize the (+,—) BC by changing the colloidal par-
ticle surface from preferentially adsorbing water (—) to pref-
erentially adsorbing lutidine (+), without any additional sur-
face treatment of the cell (see Table I). The interaction
potentials @ for this case are reported in Fig. 11. As for the
(—,—) boundary condition, sufficiently far from the critical
point (i.e., AT=T,—T=0.90 K), the potential consists only of
the electrostatic repulsion contribution [see Eq. (28)]. How-
ever, upon approaching the critical point the repulsive part of
the potential curves shifts toward larger values of the dis-
tance z, indicating that an additional repulsive force is acting
on the colloid. It is possible to make this force attractive
again by treating the surface of the cell so that its preferential
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FIG. 10. (Color online) Effective interaction potential ®(z) be-
tween a wall and a spherical particle of radius of 1.2 um immersed
in a water-lutidine mixture at the critical concentration ¢; as a func-
tion of the distance z from the wall and for various values of the
temperature in the one-phase region (7<T,) [37]. The gravitational
and the offset contribution to the potential [see Eq. (26)] have been
subtracted. The set of solid and dashed lines, which are barely dis-
tinguishable on this scale, correspond to the theoretical predictions
(see the main text for details). The potentials reported here refer to
the (—,—) boundary conditions (other cases are reported in Figs. 11
and 12) and show that an increasingly attractive force contributes to
the total potential upon approaching the critical temperature, i.e.,
upon decreasing AT=T.—T. Here T, is the nominal value of the
critical temperature, corresponding to the anomaly in the back-
ground scattering, which signals the onset of critical opalescence in
the sample. Only the data to the right of the vertical dotted line are
considered for the comparison with the theoretical predictions (see
the main text).

adsorption changes from water (—) to lutidine (+) so that the
(+,+) boundary condition is realized. As Fig. 12 shows, the
resulting potentials show indeed an attractive part the quali-

8 ‘
® % % (+-)BC T.-T[K]

Boi 4y, R R=1.85um o 090
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3 0.34

o \ 0.32

4 0.30

FIG. 11. (Color online) Interaction potential ®(z) as in Fig. 10
for the (+,—) boundary conditions and R=1.85 um [37]. An in-
creasingly repulsive force contributes to the total potential upon
approaching the critical temperature. The set of solid and dashed
lines, which are barely distinguishable on this scale, correspond to
the theoretical predictions (see the main text for details). Only the
data to the right of the vertical dotted line are considered for the
comparison with the theoretical predictions (see the main text).
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FIG. 12. (Color online) Interaction potential ®(z) as in Figs. 10
and 11 for the (+,+) boundary conditions [37]. As for (—,—)
boundary conditions (see Fig. 10), upon approaching the critical
temperature an increasingly attractive force contributes to the total
potential.

tative features of which resemble those of the case with the
(—,—) boundary condition, reported in Fig. 10. Note that the
depth of the potential in Fig. 12 corresponding to AT=0.05 is
so large that the gravitational part (which has been sub-
tracted) cannot be sampled by the particle and therefore the
position of this potential curve along the vertical axis cannot
be fixed. If, with the same (+) surface of the cell, one
changes again the colloidal particle from preferentially ad-
sorbing lutidine (+) to preferentially adsorbing water (—),
we can experimentally realize the (—,+) boundary condition
(see Table I) for which a repulsive critical Casimir force is
expected. The resulting potential is reported in Fig. 13 and
shows the same qualitative features as the one in Fig. 11,
with an increasingly repulsive force which builds up upon
approaching the critical point.

8 T T
| DCZ%% (- BC R=1.2um
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FIG. 13. (Color online) Interaction potential ®(z) as in Figs.
10-12 for the (—,+) boundary conditions. As in the case of the
(+,—) boundary conditions (see Fig. 11) an increasingly repulsive
force contributes to the total potential upon approaching the critical
temperature. The set of solid and dashed lines, which are barely
distinguishable on this scale, correspond to the theoretical predic-
tions (see the main text for details). Only the data to the right of the
vertical dotted line are considered for the comparison with the the-
oretical predictions (see the main text).
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2. Comparison with theory

The experimental data reported in the previous section
can be compared with the theoretical predictions presented in
Sec. IT A, which are expected to be valid for 6=z/R<1
(Derjaguin approximation). In the experimental setting cor-
responding to Figs. 10 and 13, R=1.2 um whereas z
=<0.3 um and z=0.8 um, respectively, so that 6=0.25 and
0=0.67. In Figs. 11 and 12 one has R=1.85 um with z
=0.8 and z=0.3, respectively, corresponding to 6=0.43 and
0=0.16. Accordingly the Derjaguin approximation is ex-
pected to provide a sufficiently accurate description of the
experimental data, possibly apart from those at larger values
of z in Figs. 11 and 13, the corresponding potential values of
which are negligibly small. In order to extract from the mea-
sured potential only the part which is due to the critical Ca-
simir force we focus on that range of distances z for which
the electrostatic contribution ®(z) [see Egs. (26) and (28)]
as measured far from the critical point (i.e., for AT=0.30 K
in Fig. 10 and AT=0.90 K in Fig. 11) is actually negligible
using as a criterion |®((z)| =0.5kzT. This latter choice also
avoids additional complications due to possible changes in-
duced by critical fluctuations in the electrostatic contribution
®(z) upon approaching the critical point. Accordingly, for a
quantitative comparison with the theoretical predictions we
consider only data corresponding to z=0.12 um in Fig. 10
[(—,—) BC], z=0.1 um in Fig. 11 [(+,—) BC], and z
=0.16 um in Fig. 13 [(—,+) BC], excluding in each case
the data set corresponding to the largest value of AT, which
has been used to define ®(z). Unfortunately, the number of
data points which satisfy this condition in the case of Fig. 12
is quite limited for providing a basis for a reliable analysis;
therefore we do not process these corresponding data.

The strength of the critical Casimir force depends strongly
on the deviation 7.—T from the critical point via the bulk
correlation length é~|T.—T|™". Accordingly, even a small
systematic error in the experimental determination of 7 and
T. can result in sizeable discrepancies in the comparison be-
tween measured potentials and theoretical predictions. Statis-
tical variations and a possible drift of the temperature during
the acquisition of the data, which are kept within 5 mK by
the temperature controller used in our experimental appara-
tus [37], are similarly important. In order to circumvent parts
of these problems we compare the experimental data, se-
lected by the aforementioned criterion (see the vertical lines
in Figs. 10, 11, and 13), for a certain boundary condition and
for the six temperatures 7;=7T.—AT;, i=1,...,6, closest to T,
with the theoretical prediction for ®(z; &) provided by Egs.
(12) and (13). For each T; the values & of the correlation
length and of a possible residual offset ®g.; are deter-
mined in such a way as to optimize the agreement between
D (25 6)+DPfrer; and the corresponding experimental data
set. A drift of the temperature during the acquisition of the
data might affect the value of the correlation length §; result-
ing from this procedure. As we shall see below, even if
present, this possible drift does not strongly affect the final
estimate for the correlation length amplitude &, in Eq. (2),
the uncertainty of which is dominated by the systematic un-
certainty of the theoretical predictions stemming from finite-
size extrapolations of the Monte Carlo data.
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TABLE III. Experimental estimates of the nonuniversal correla-
tion length amplitude &, for the water-lutidine mixture at the critical
concentration. In light scattering (LS) experiments the bulk corre-
lation length &(7) is determined by measuring the wave-vector
(static) or frequency (linewidth, dynamics) dependence of the scat-
tered intensity. A fit of &) to the expected algebraic behavior [Eq.
(2)] yields the value &,. Alternatively, & can be obtained on the
basis of the measured value of the nonuniversal amplitude A* which
characterizes the divergence of the specific heat at constant pressure
Cp(1—0")=(A"/a)7% and the theoretical [82] or experimental
[85] value of the universal amplitude ratio Q*:A*ggp/ (Mkg),
where M is the molar mass of the mixture and p its mass density at
the critical point [12,11]. A careful theoretical analysis of experi-
mental data for the critical adsorption profiles also leads to an esti-
mate for &, [86]. Comparing the experimentally measured potentials
to the theoretical predictions for the critical Casimir contribution we
obtain the estimate reported in, cf. Eq. (34).

&)exm

(A) Ref. (year) Method
20x0.2 [83] (1972) Static LS
2.92+0.19 [83] (1972) Dynamic LS, linewidth
27+02 [84] (1987) Static LS
2.3 [85] (1993) Specific heat
2.1 [86] (1997) Critical adsorption
1.98+0.04 [82] (2006) Specific heat

The data set (7;,&;) is then fitted with the theoretically
expected power-law behavior given by Eq. (2). This is car-
ried out by fixing the universal critical exponent v==0.630 to
its best known theoretical value while determining the non-
universal amplitude & and the value 7™ of the critical
temperature from the data set (T}, ),

) 7. \~0.63
&= O“”(“ﬁfﬁ)) _ (32)

Here we assume that the temperatures 7; are sufficiently
close to T, so that ¢ is described correctly b;/ its leading
power-law behavior. The resulting value of Of“ can then be
compared with the available independent experimental esti-
mates reported in Table III, providing a check of the consis-
tency of the experimental data with the theoretical predic-
tions. In spite of the scattering of the available experimental
data, which might be due to different conditions of the mix-
ture (such as contaminations or slightly different concentra-
tions) or to different systematic uncertainties of the various
approaches, all the estimates are within the range

£ =23 +04 A, (33)

estimated via a least-square fit of the data [82-86] in
Table III. (The experimental value quoted in Ref. [37] refers
to the estimate of Ref. [83].) The limited set of temperatures
which have been investigated experimentally (apart from one
far away from 7, and used for fixing the background poten-
tial, six different values for each set of boundary conditions)
does not allow us to determine simultaneously and reliably
the exponent v from the experimental data.
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In comparing the experimental data with the theoretical
predictions we have to take into account the uncertainties
which affect both of them. As discussed in Sec. II A the
currently available theoretical predictions within the Der-
jaguin approximation are affected by a 20% systematic un-
certainty, clearly visible in Fig. 2, for the amplitude of the
scaling function of the Casimir potential ®.

As far as the experimental data are concerned, the system-
atic uncertainties—which are the ones most relevant for the
comparison—concern (i) the particle-wall distance z, which
can be determined by the hydrodynamic method up to Az
= +30 nm (see Sec. III A and Ref. [69]) and (ii) the absolute
temperature scale 7" and, in particular, the value of the critical
temperature 7. As described above, in order to cope with the
uncertainty in 7 we opted for an indirect determination of the
associated correlation length from the best fit of the experi-
mental data with theoretical predictions.

In addition to these systematic uncertainties, there are sta-
tistical errors associated with the way the potential @ is
determined via TIRM. The number N(n,.) of counts during
the sampling time f,y,, registered in each bin of size Ang,
centered around ng. and forming the intensity histogram
Pse(n)=N(ng)/ (NyAng) reported in Fig. 6(b), is subject to
statistical fluctuations AN(ng) which affect the estimate of
Pse(ng), p.(z), and therefore of the potential ®; N
= fsamplsamp 18 the total number of counts in the time series of
ng(t) of duration fg,, from which the histogram of p.(ny)
has been constructed. One expects that these statistical fluc-
tuations are relatively more important for those bins which
are less populated, i.e., for smaller N(ng). In terms of the
distance z of the colloid from the wall, they correspond to
values which are less frequently sampled during the Brown-
ian motion of the particle under the influence of the potential
®, i.e., to larger values of the potential. This can be seen
directly from the potentials reported in Figs. 10-13, and, cf.
17, in which the experimental data are more scattered very
close to the wall and far from it, whereas the sampling of the
potential ® is particularly accurate around its minimum. In
order to evaluate the statistical uncertainty associated with
each data point of the potential, ideally one should construct
the histogram of p.(n,.) based on several different realiza-
tions of the time series n.(r) and then analyze the statistical
properties of this ensemble of plots. Alternatively, one might
evaluate the autocorrelation time 7., of ny(f) [e.g., from a
detailed study of the autocorrelation function C(&r), see the
text before Eq. (25)]. Assuming that the number N,,(n,) of
statistically independent counts in a bin of the histogram is
given by N;,(ny)=N(ny)/(fsampteor) and assuming that the
statistics of the counts is Poissonian, the associated relative
statistical fluctuation is related to the number of counts by
AN, (ng.)=VNy,(ns,) and induces a statistical uncertainty
A(I)(Z(nsc))/(kBT) =ANin(nsc) /Nin(nsc) =Ni_nl/2(nsc) for the
value of the potential ® at the position z(ng) corresponding
to the scattered number of photons n,.. However, in the com-
parison between the experimental data and the theoretical
predictions, the statistical error in the former is expected to
be negligible compared to the systematic uncertainty in the
latter and therefore we do not proceed to a detailed evalua-
tion of the statistical error associated with the data points
reported in Figs. 10-13, and, cf. Fig. 17. Actually, a good
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FIG. 14. (Color online) Correlation length & as a function of the
temperature deviation AT=7.—T from the experimentally located
critical temperature 7, for the water-lutidine mixture at the critical
concentration. The sets of data points are obtained by optimizing
the agreement between the experimental data from Fig. 10 and the
corresponding theoretical predictions for the Casimir potential for
the (—,—) boundary conditions (Fig. 2, see the main text for de-
tails). The upper (lower) set of points has been determined by using
as the scaling function ®_ =0, ,) of the Casimir potential the
one reported by the dashed (solid) line in Fig. 2. The dashed and
solid curves are the best fit of the corresponding data sets based on
Eq. (32) with the corresponding values AT =7,- 7" indicated
by the vertical dashed and solid lines, respectively, i.e., £ diverges at
Tf.ﬁl) corresponding to AT(T= Ti,ﬁt)) =T.— Ti,ﬁt) =AT£.'c 0,

estimate of the magnitude of the statistical error can be in-
ferred from the scatter of the experimental data points rela-
tive to a smooth curve interpolating each potential.

In order to discard those data which are affected by large
statistical fluctuations, we consider for the comparison with
the theoretical prediction only data fulfilling ®(z) <6kgT
and z=<z,,,, where z,,,,=0.3 um for Fig. 10,

Zmax (M) 0.3 035 035 0.4 0.5 0.8
AT (K) 043 034 032 030 028 025

for Fig. 11, and

Zm (um) 04 04 045 05 055 06
AT (K) 018 0.2 009 007 005 004

for Fig. 13. For the (—,—) boundary conditions, in Fig. 10
we report the comparison between the theoretical prediction
and those experimental data which have been selected as
explained above. The solid and dashed lines, barely distin-
guishable, correspond to the predictions given by Eq. (12) by
using for O __=0, ,) the scaling functions described by the
solid and dashed lines, respectively, in Fig. 2. (For each tem-
perature AT; the experimental potentials have been shifted
vertically by the amount —® ., ; determined previously as
the best fit parameter.) The corresponding values & of the
correlation length are reported in Fig. 14 together with the
resulting best fit based on Eq. (32), which leads to the least-
square estimates §§)ﬁt>=l.7 +0.1 A and AT(cﬁt) ETC—Tﬁﬁt)
=52+ 10 mK for the solid curve and £™=1.7+0.1 A and
ATgﬁt):65 +7 mK for the dashed one. Taking into account
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FIG. 15. (Color online) Same as Fig. 14, obtained by optimizing
the agreement between the experimental data from Fig. 11 and the
corresponding theoretical predictions for the critical Casimir poten-
tial for the (+,—) boundary conditions (Fig. 2).

the systematic uncertainty of the scaling functions for the
Casimir potential, we arrive at the combined estimate
AT“”) 60+ 15 mK, i.e., the value of 7, determined experi-
mentally is actually higher than the value T(flt resulting from
the comparison with the theoretical predlctlons In addition,
this comparison allows one to estimate the correlation length
¢, for which no independent experimental estimate is pres-
ently available. According to Fig. 14 one has 20 nm=¢
=40 nm, so that for the range 0.12 um<z=<0.3 um of dis-
tances this translates into the ranges 3=x=z/{=<15 and 6
<u=(1-T/T)"¥(z/ &) /» <70 of the scaling variables x
and u (see Flg 2). In order to be able to test prominent
features of the theoretically predicted scaling function such
as the occurrence of a minimum for u,;,=0.5, one has to
reach £= 180 nm, i.e., one must get still closer to the critical
point (AT=<6 mK) than it was possible in the present experi-
ment.

For the (+,—) boundary conditions, in Fig. 11 we report
the comparison between the theoretical prediction and those
experimental data which have been selected as explained
above. As in Fig. 10, the solid and dashed lines correspond to
the predictions based on Eq. (12) by using for O
=0, the scaling functions indicated as solid or dashed
line, respectively, in Fig. 2. (As in Fig. 10, the experimental
potentials have been shifted vertically for each temperature
AT; by the amount —® . ; determined previously as the
best fit parameter.) The corresponding ensuing values & of
the correlation length are reported in Fig. 15, together with
the resulting best fit based on Eq. (32), which leads to the
least-squares estimates &1V=1.8+0.1 A and ATV=T

-T=234+2 mK for the solid curve and éf‘t)—l 9
+01A and ATT™=235+2mK for the dashed
one. The final combmed estimate of AT““), which takes
into account the systematic uncertainty of the amplitude
of the theoretical prediction of ©_), is there-
fore A T(f“)—235+3 mK. The correlation lengths reported
in Fig. 15 are in the range 20 nm=§¢=<95 nm. The cor-
responding ranges of distances z depend on the temperature
AT (see Fig. 11) so that the experimental data cover the
scaling variable ranges 34=<x=z/¢(<17 and 7=<u=(l
—T/ Cfil))l/v(z/g(()fit))l/vs 85 (see F]g 2)
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FIG. 16. (Color online) Same as Figs. 14 and 15, obtained by
optimizing the agreement between the experimental data from Fig.
13 and the corresponding theoretical predictions for the critical Ca-
simir potential for the (—,+) boundary conditions (Fig. 2).

For the (—,+) boundary conditions, in Fig. 13 we report
the comparison between the theoretical prediction and those
experimental data which have been selected as explained
above. As in Figs. 10 and 11, the sets of solid and dashed
lines, barely distinguishable, correspond to the predictions
based on Eq. (12) by using for ®_ =0, ) the scaling
functions indicated as solid or dashed line, respectively, in
Fig. 2. (As in Figs. 10 and 11, the experimental potentials
have been shifted vertically for each temperature AT; by
the amount —® . ; determined previously as the best fit
parameter.) The corresponding values & of the correlation
length, which can be inferred from this comparison, are re-
ported in Fig. 16, together with the resulting best fit based on

g. (32), which leads to the least- squares estimates §<m)
—2 552025 A and ATM=7,-T=14=11 mK for the
solid curve and §f)f”)— 7+02 A and AT =T, 7
=10%=9 mK for the dashed one. The final combmed estimate
of AT(fit which takes into account the systematic uncertainty
of the amphtude of the theoretical prediction of ©_,), is
therefore AT(“t =14=*11 mK. The correlation lengths re-
ported in Fig. 16 are in the range 28 nm =< £=< 66 nm with the
corresponding ranges of the distances z depending on the
temperature AT (see Fig. 13) so that the experimental data
cover the scaling variable ranges 7=<x=z/£=<67 and 22
<u=(1-T/T)"(z/ &)1 <790 (see Fig. 2).

The experimental data reported in Fig. 13 (which Fig. 16
refers to) have actually been acquired by an experimental
setup which makes use of an improved temperature control
compared to the one used during the acquisition of the data
reported in Figs. 10-12 and 17. This upgrade of the setup is
characterized by a better temperature stability and allows one
to determine T, with higher accuracy [87].

As far as the value of &; is concerned, taking into account
the values reported above for the (—,—) and (+,—) boundary
conditions, one obtains the combined estimate §f)f“)
=1.8+0.2 A [37] Wthh is in very good agreement with the
experimental value §f) xp) reported in the first line of Table III
(and quoted in Ref. [37]). It is interesting to note that the
principal source of error in these estimates of &, is actually
the systematic uncertainty in the theoretical predictions,
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FIG. 17. (Color online) Effective interaction potential ®(z) be-
tween a wall and a particle of diameter 2R=3.69 um, immersed in
a water-lutidine mixture at mass fraction ¢;=0.2<c¢j, as a function
of the distance z and for various values of the temperature close to
the demixing phase boundary [37]. This system corresponds to the
(+,+) boundary conditions. The gravitational and offset contribu-
tions to the potential [see Eq. (26)] have been subtracted. The
abrupt formation of a narrow minimum of the potential close to the
wall upon increasing the temperature is interpreted as the formation
of a liquid bridge between the particle and the wall (see the main
text).

which turns out to be more significant than the statistical or
possible systematic experimental errors, such as the one due
to possible variations or fluctuations of the temperature oc-
curring during the measurement. Actually, due to the pro-
nounced dependence of the theoretical predictions on the
temperature via the correlation length, these variations
should result in averaged effective values of the correlation
length, most probably affecting the overall amplitude, i.e.,
the value of &'"). The estimate of &"=2.6+0.3 A based on
the data for the (—,+) boundary conditions agrees with the
estimate reported in the third row of Table III but it is larger
and not quite compatible with the former one. This might be
due to larger systematic errors in the latter or due to possibly
different conditions of the mixture employed in the experi-
ment (e.g., purity or possible contamination by leaching).
The combined estimate which accounts for the results of our
analysis is therefore

&V=22+06A, (34)

which is compatible and similar to the experimental value
§ff"p) reported in Eq. (33) but carrying a larger, mainly sys-
tematic, uncertainty. This agreement is particularly signifi-
cant if one takes into account the fact that Eq. (34) combines
results obtained from different experimental conditions (dif-
ferent particles and different surface treatments), interpreted
on the basis of the available theoretical predictions. It is
worthwhile to point out that, in principle, instead of measur-
ing solely the temperature 7" as done in the present work, one
could have measured independently the correlation length &
in the bulk fluid. This way ¢ is not a fit parameter but an
input which fixes the theoretical prediction for the critical
Casimir potential completely and which, as a function of
temperature, would be described by Egs. (2) and (33). Since
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&P equals &M which our theoretical curves refer to, this
implies that with this fixed input the theoretical predictions
for the potentials would yield the solid and dashed lines in
Figs. 10, 11, and 13. In this sense one can state that the
remarkable agreement between theory and experiment ob-
served in the figures holds without adjusting parameters.

C. Noncritical composition

In the sense of renormalization-group theory the deviation
of the bulk concentration ¢; from its critical composition cj
represent the second relevant scaling field besides the re-
duced temperature. In the language of the Ising universality
class the field conjugate to this deviation plays the role of a
bulk magnetic field. (Here we do not discuss that actually
two linear combinations of the conjugate field and of the
reduced temperature form the appropriate orthogonal scaling
fields.) In this sense, as already mentioned in Sec. II B, mea-
surements along thermodynamic paths of varying tempera-
ture at fixed off-critical compositions probe the dependence
of the critical Casimir forces on another, equally important
scaling variable. Corresponding theoretical predictions have
been derived for the parallel-plate geometry [88] as well as
for two adjacent spherical particles [19,20]; one expects that
a similar behavior holds for the present geometry of a sphere
near a planar surface. For a composition of the binary liquid
mixture far away from its critical value the critical Casimir
forces become negligible. For small deviations from the criti-
cal lutidine mass fraction ¢ and for the (+,+) BC (so that
both surfaces preferentially adsorb lutidine) the temperature
variation in the Casimir force upon approaching the two-
phase coexistence line near the critical point from the mixed
phase depends on whether ¢; is larger or smaller than cj. If
¢y is slightly smaller than the critical composition, ¢; <cj,
the Casimir force is expected to behave similarly as along
the critical composition, i.e., it should exhibit a minimum
before reaching the temperature 7,.(c;) at which phase sepa-
ration occurs [T, (c,=c7)=T,]. However, the depth of the
critical Casimir potential is expected to be considerably
larger away from the critical composition (see Fig. 8 in Ref.
[20]). For lutidine mass fractions slightly larger then the
critical value, ¢; > ¢}, as function of temperature the Casimir
force is expected to vary similarly as in the case ¢; <cj but
to be much weaker.

These expectations are in agreement with the observations
made in our experiment for the (+,+) BC and for several
values of lutidine mass fractions in the range 0.26<<c,
<0.32 (not shown). For ¢; close to ¢j the measured poten-
tials between the wall and the colloidal particle look similar
to those obtained for the critical composition. For ¢; much
smaller than ¢} the potentials are similar to the ones shown
in Fig. 17 (see, e.g., Fig. 6.9 in Ref. [89], corresponding to
¢;=0.25).

For the values of ¢; further away from ¢ the system is no
longer near criticality. Therefore the critical Casimir force
ceases to influence effective interactions between the colloi-
dal particle and the wall. However, for the (+,+) BC and for
temperatures allowing for phase separation, i.e., in the
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present case above the critical temperature, one expects a
bridging transition to occur at compositions ¢; <cj. If the
lutidine concentration is below its critical value c; the con-
jugate bulk field favors the water-rich phase whereas for the
(+,+) BC the confining surfaces prefer the lutidine-rich
phase. At a single wall this competition gives rise to wetting
phenomena and in confined geometries to condensation phe-
nomena. As discussed in detail in Sec. II B, if a bridge of the
condensing phase connects two adjacent spheres immersed
in the binary liquid mixture, there is an attractive wetting-
induced interaction that pulls the spheres together. We expect
a similar scenario to occur for the present geometry, i.e., if a
wetting bridge of the phase which is favored by both sur-
faces is formed between the spherical particle and the planar
wall.

Indeed, the measurements carried out for lutidine mass
fractions c¢; =0.2 indicate that such a bridge formation takes
place. In Fig. 17 we plot the measured particle-wall interac-
tion potentials at several temperatures near but below the
temperature of demixing 7,(c;=0.2), which could not be
located with sufficient accuracy. Moreover, the temperature
scale in Fig. 17 has not been calibrated with a reference
temperature so that only temperature changes are significant.
As one can see for temperatures between 307.31 and
307.36 K, the potentials are very well described by Eq. (26)
which accounts for the electrostatic and gravitational contri-
butions only. However, upon further increasing the tempera-
ture by 20 mK we observe a markedly different behavior of
the potentials. Suddenly the interaction potentials are shifted
toward smaller values of distances z. Also the shape is
changed in that the potentials exhibit a narrow and deep
minimum. This sudden shift of the potential well toward the
surface indicates the onset of an attractive interaction be-
tween the particle and the wall. A further slight increase in
temperature gives rise to an even stronger shift of the poten-
tial minimum toward the wall. This phenomenon is observed
only for lutidine mass fractions smaller than the critical
value, i.e., on that side of the phase diagram where the mix-
ture is poor in the component that is preferentially adsorbed
by both surfaces. This behavior is in stark contrast to critical
Casimir forces which vary gradually as a function of the
thermodynamic variables. On the other hand, for the (—,—)
boundary conditions and ¢; = ¢ the resulting potentials do
not differ qualitatively from those shown in Fig. 10. But by
further increasing the concentration of lutidine to ¢;=0.4 one
observes the sudden formation of a narrow and deep poten-
tial well upon increasing the temperature (see the potential
corresponding to ¢;=0.3, 0.32, and 0.4, reported in Fig. 6.11
of Ref. [89]). These observations are in agreement with the
theoretical concepts described in Sec. II B. The effective po-
tentials associated with the formation of a bridge, formed by
the phase coexisting with the bulk phase, between the par-
ticle and the substrate are theoretically expected to exhibit
hysteresis upon changing the temperature back toward its
start value. However, in the present experiment, only rather
weak hints for this hysteresis have been observed and actu-
ally no convincing evidence for it could be produced.
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V. SUMMARY, CONCLUSIONS, PERSPECTIVES,
AND APPLICATIONS

A. Summary

We have presented a detailed account of the experimental
and theoretical investigations of the effective forces acting
on spherical colloidal particles of radius R close to a sub-
strate and immersed in a near-critical binary liquid mixture,
shortly reported in Ref. [37]. Based on total internal reflec-
tion microscopy (Figs. 5-7) our main experimental findings
are the following.

(1) Upon raising the temperature T of the binary liquid
mixture of water and lutidine at its critical concentration to-
ward its lower critical point 7, of demixing (see Fig. 8), an
attractive or repulsive force acting on the colloidal particle
arises gradually.

(2) This effective force is attractive if the surfaces of the
colloid and of the substrate display preferential adsorption of
the same component of the mixture (see Figs. 10 and 12),
whereas it is repulsive in the cases of opposing preferences
(see Figs. 11 and 13). This contribution to the total effective
force (compare Sec. IV A and Fig. 9) is negligible at tem-
peratures a few hundred mK away from 7, and it increases
significantly upon approaching it. As experimentally verified,
these so-called critical Casimir forces can be reversibly
switched on and off by changing the temperature.

(3) If the concentration of this binary liquid mixture is
close to but not equal to the critical one we have observed a
behavior which is qualitatively similar to the one observed
for the mixture at its critical concentration. In the close vi-
cinity of the critical point there is no experimental evidence
for the occurrence of wetting phenomena.

(4) If the concentration of the binary liquid mixture differs
significantly from the critical one and both surfaces exhibit
the same preferential adsorption for that component of the
mixture which is disfavored in the bulk, we observe the
abrupt formation of a narrow and deep potential well (see
Fig. 17) upon approaching the phase boundary of first-order
demixing.

The experimental observations (1)—(3) can be consistently
interpreted in terms of the occurrence of the critical Casimir
effect in near-critical mixtures, whereas observation (4) can
be understood in terms of the formation of a bridgelike con-
figuration of the segregated phases (see Fig. 4). For mixtures
at the critical concentration it is possible to quantitatively
compare the measured potentials with the corresponding the-
oretical predictions for the contribution of critical Casimir
forces [see Egs. (10) and (12) as well as Figs. 2 and 3],
derived within the Derjaguin approximation (see Fig. 1) and
for the range of distances within which electrostatic forces
are negligible (see the solid lines in Figs. 10, 11, and 13).
The correlation length ¢, as determined from the comparison
between the experimental data and the theoretical predic-
tions, follows rather well the theoretically expected universal
power-law behavior (see Figs. 14-16) and the associated
non-universal amplitude &, is in agreement with previous
independent experimental determinations for this specific bi-
nary mixture [compare Eq. (34) to Eq. (33) and see Table
I1].
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The same critical Casimir forces, investigated here by us-
ing a water-lutidine mixture, are expected to act on a colloid
immersed in any binary liquid mixture close to its demixing
point (or in any fluid close to its gas-liquid critical point) and
in the vicinity of a substrate. While the values of nonuniver-
sal parameters, such as 7. and &), depend on the specific
mixture, the resulting critical Casimir force is described by a
material-independent, universal scaling behavior [see Eq.
(3)] and scaling function [see Eq. (5) and Fig. 3 for small
particle-substrate separation], which depends only on whe-
ther the adsorption preferences of the particle and of the
substrate are equal [(+,+), (—,—)] or opposite [(+,—),

(=+)]

B. Discussion

The experimental observations summarized above might
contribute to the understanding of the reversible aggregation
of a dilute suspension of colloidal particles immersed in a
water-lutidine mixture close to its demixing point, which has
been the subject of several experimental studies since it was
first observed in 1985 [56] (for a review see Ref. [57]). The
formation of pre-wetting layers around the particles was first
invoked as a possible explanation for this phenomenon. Later
on it was experimentally demonstrated that aggregation
might actually occur in a region of the phase diagram which
extends too far from the two-phase coexistence line and from
the wetting transition to be possibly related to pre-wetting
phenomena [76]. (However, no aggregation was observed for
mixtures at the critical concentration [76].) Among the pos-
sible different mechanisms (see, e.g., Ref. [77] for a sum-
mary) which might contribute to explain this flocculation,
also critical Casimir forces have been invoked theoretically,
as summarized and discussed in Refs. [19,20,39]. In particu-
lar, the experimental observation (besides for 2,6-lutidine
and normal water as solvent, it is reported also for colloids
dispersed in mixtures of 3-methylpyridine, heavy, and nor-
mal water [78,79] or 2-butoxyethanol and normal water [80])
that flocculation phenomena are enhanced near but off the
critical point, at compositions which are slightly poorer in
the component preferentially adsorbed by the colloids than
the critical one, matches with the fact that also the critical
Casimir forces attain their maximum values there. Although
flocculation involves the interaction of many colloidal par-
ticles and therefore is a many-body phenomenon (which can
also be interpreted as a genuine phase transition in a ternary
mixture [81]), some features such as the experimentally de-
termined asymmetry of the aggregation line with respect to
the critical concentration (see, e.g., Refs. [56,76]) can be
qualitatively accounted for by the behavior of the effective
interaction among two colloids, mediated by the near-critical
solvent. This problem was theoretically investigated in Refs.
[19,20,39] within various approximations. In this context,
our experimental study of the interaction between a single
colloidal particle and a substrate suggests that the actual
magnitude of the forces due to the critical Casimir effect and
due to the formation of a bridgelike configuration are large
enough to play an important role also in aggregation phe-
nomena. This has been demonstrated recently on patterned
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substrates [40,90] and qualitatively for a refractive-index-
matched colloidal system [91,92]. However, more quantita-
tive corresponding statements require additional dedicated
studies of many-body effects. We note that, depending on the
specific physical and chemical properties of the colloidal
suspension under consideration, various mechanisms might
be at play in determining its aggregation, especially for
charged colloids, for which screening effects or even field-
induced phase separation of the mixture might be predomi-
nant [77,93]. In this respect, recent experimental studies of
the structure factor of such an aggregating colloidal suspen-
sion via synchrotron small angle x-ray scattering [79] might
provide important insight into the physical mechanisms at
play in that phenomenon.

At the critical composition, the present experimental
study detected the occurrence of critical Casimir forces
in a range of distances z which corresponds to a scaling
variable x=z/&> 1. In this limit, some of the qualitative fea-
tures of the scaling function of the force [such as the occur-
rence of a minimum for (+,+) boundary conditions—see
Fig. 3] have not been probed. Actually, in this limit the as-
sociated potential for (+,%) boundary conditions is very
well described by an exponential function ®(z)/(kgT)
=27A_(R/ &exp(—z/ &) [see Egs. (12) and (14)]. A clear sig-
nature of the collective nature of such an interaction is the
fact that its range is set by the correlation length & On the
other hand, the functional form of this dependence on z is
quite generic and actually is common to interactions of rather
different nature [e.g., electrostatic ones—see Eq. (28)—the
range of which is set by the screening length «']. For a
relatively small correlation length £== ™! the critical Casimir
interaction and the electrostatic repulsion have the same
range and, depending on the specific values of the param-
eters, one of them might dominate over the other. Especially
in this case one expects an interplay between these two ef-
fects due to the fact that the order parameter profile develops
inhomogeneities on a length scale & which is comparable to
the typical length «~! which characterizes the electrostatic
screening in the homogeneous medium. Taking into account
that ions have different solubilities in water and lutidine, the
enhancement of one of these two components close to the
confining surfaces and due to the local segregation of the
mixture might result in a change of the screening of the
electrostatic interaction compared to the case of a noncritical
homogeneous medium. In addition to this modification of the
spatial distribution of the resulting ion concentration, the cor-
responding ion correlations might be affected by those of the
order parameter to which the ion concentration couples and
which build up upon approaching the critical point. Analo-
gously, as dispersion forces depend sensitively on the spatial
structure of the dielectric media forming the system and on
the associated permittivities &(w,x), the inhomogeneities
which build up in the medium upon increasing & might affect
significantly the background van der Waals contribution
@ ,qw to the total potential compared to the estimate we
gave for a homogeneous mixture [see Egs. (27) and (29)]. In
contrast to the critical Casimir effect, however, a quantitative
analysis of the interesting interplay between critical fluctua-
tions and dispersion/electrostatic forces necessarily requires
the knowledge of several system-specific properties such as
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the actual spatially varying composition of the mixture and
the resulting permittivity e(w,x). Some of these properties
might be inferred experimentally via, e.g., surface plasmon
spectroscopy of the binary mixture close to the substrate. The
comparison of the experimental evidences presented here
with the theoretical predictions has not generated an actual
need to account for the possible interplays mentioned above.
Presumably they result into effects which are negligible in
the range of variables explored in our experiment and within
our experimental accuracy. This might not be the case for
different choices of the particle and the mixture for which,
e.g., dispersion forces and therefore their possible modifica-
tion due to critical fluctuations might be more relevant than
in the system investigated here.

In order to compare the experimental data with the theo-
retical predictions we have inferred the bulk correlation
length ¢ from the experimental data for the critical Casimir
potential (see Sec. IV B). Reversing the line of argument, &
can be inferred on the basis of the deviation AT from the
critical temperature and of the knowledge of the nonuniver-
sal amplitude &, which has been determined by independent
bulk experiments. However, one could also determine the
scaling functions of the critical Casimir potentials on the sole
basis of experimental data, without need of any additional
theoretical information. This requires the experimental deter-
mination of the actual correlation length ¢ corresponding to
each temperature, which can be accomplished, e.g., by study-
ing the light scattered by the mixture sufficiently far from the
colloid and the substrate, probing the behavior of bulk fluc-
tuations. Such an independent experimental determination of
the scaling function would provide an additional, valuable
test of the theoretical predictions.

C. Perspectives and applications

Suitable chemical treatments of the surfaces in contact
with the binary liquid mixture can be used in order to control
the strength of their preferential adsorptions (i.e., the corre-
sponding surface fields, see Sec. IT A) and therefore the re-
sulting critical Casimir force. The experimental data pre-
sented here have been consistently interpreted in terms of the
theoretical predictions corresponding to strong preferential
adsorption. However, in view of possible applications of
these effective forces, it is also important to study in detail
both experimentally [90] and theoretically [18,40,43,44]
cases in which such a preference is weaker or spatially
modulated in a controllable fashion via suitable chemically
patterned substrates. In the latter case and depending on the
symmetry of the pattern, the resulting critical Casimir force
acting on the colloidal particle acquires a lateral component
in addition to the normal one investigated here [40,90]. This
lateral force, as the normal one, is characterized by a univer-
sal scaling behavior and its range is again set by the corre-
lation length &, such that it can be switched on and off by
controlling the distance from the critical point. In addition,
the force turns out to be rather sensitive to details of the
imprinted chemical structure, e.g., the striped pattern consid-
ered in Refs. [40,90]. A proper theoretical analysis of the
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critical Casimir potential enables one to infer from the ex-
perimental data knowledge about such details even if they
could not be determined by independent means, such as
atomic force microscopy [40].

The lateral Casimir force might also find applications in
colloid rheology. Consider, e.g., a dilute suspension of (+)
colloids exposed to a suitably fabricated substrate which has
an adsorption preference smoothly varying along one direc-
tion from (—) to (+), such that it changes appreciably on the
scale of the radius of the colloid. For sufficiently small val-
ues of the correlation length, the colloids diffuse isotropi-
cally along the substrate. However, upon approaching the
critical point, the lateral Casimir force associated with the
spatial gradient of the preferential adsorption (i.e., of the
corresponding surface field) adds a deterministic drift to this
diffusion process, resulting in a transport of colloids along
the surface of the substrate. The direction of the flow will be
reversed by changing the preferential adsorption of the col-
loid from (+) to (=), which can be exploited as a reversible
selection mechanism. In this context, the critical Casimir
force acting on a micrometer-sized colloid exposed to a sub-
strate with a modulated adsorption preference on the scale of
some hundred micrometers has been recently studied experi-
mentally [87].

Topographical modulations of the surface of an otherwise
chemically homogeneous substrate can also be used to con-
trol the direction of the total force acting on a similar sub-
strate [17] or on a colloidal particle exposed to it. Addition-
ally, chemical patterning or geometrical deviations from
spherical symmetry of the colloidal particle (e.g., ellipsoidal
colloids) result in a critical Casimir forque [35,36] if the
particle is exposed to a substrate. Combining all these fea-
tures one should be able, e.g., to control reversibly via
minute temperature changes the orientation of such colloids
exposed to a striped substrate.

The critical Casimir force acting on a colloidal particle
close to a plate fluctuates in time due to the fact that it origi-
nates from time-dependent critical fluctuations. In the
present analysis we focused on the mean value of such a
force and on the associated averaged potential ®.. However,
as explained in Sec. IIT A, TIRM naturally provides a mea-
surement of the time-dependent sphere-plate distance z(r)
which, in turn, can be used to determine the correlation time
tg of the critical Casimir force and how its expected alge-
braic temporal singularity builds up upon approaching the
critical point. (Some aspects of this dynamical behavior are
discussed in Refs. [22,94,95].) This critical slowing down of
the critical Casimir effect can in principle be exploited in
order to control the resulting dynamics of the colloidal par-
ticle.

In contrast to interactions which typically act among col-
loids (such as electrostatic and dispersion forces), the critical
Casimir force is characterized by a pronounced temperature
dependence. This fact can possibly be exploited in order to
control via minute temperature changes the phase behavior
and aggregation phenomena in colloidal dispersions in the
bulk or close to those chemically structured solid surfaces
which find applications in the fabrication of nanometer and
micrometer scale devices. Not only the range of the resulting
interaction can be controlled but also its sign and spatial
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direction. This can be typically achieved by surface treat-
ments and it does not require (as it does, e.g., for dispersion
forces) substantial changes or a fine tuning of the bulk prop-
erties of the materials which constitute the immersed objects
and the mixture itself. These properties could be used, e.g.,
in order to neutralize the attractive quantum mechanical Ca-
simir force responsible for the stiction which brings micro-
electromechanical systems to a standstill. If these machines
would work not in a vacuum but in a liquid mixture close to
the critical point, the stiction could be prevented by tuning
the critical Casimir force to be repulsive via a suitable coat-
ing of the various machine parts. With optically removable or
controllable coatings, one could very conveniently control
the functioning of the microdevice without acting directly on
it. In addition, properly designed surfaces might provide

PHYSICAL REVIEW E 80, 061143 (2009)

temperature-controlled confining potentials which might find
applications in self-assembly processes [90].
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